Прямая, параллельная стороне ас треугольника авс, пересекает его сторону ав в точке м, а сторону вс- в точке к. найдите площадь треугольника авс, если вм=4см, ас=8см, ам=мк, а площадь треугольника мвк = 5 см²
Проведем МА⊥α и МВ⊥β. МА = 12 - расстояние от М до α, МВ = 16 - расстояние от М до β.
Пусть плоскость АМВ пересекает ребро двугранного угла - прямую а - в точке С. МА⊥α, а⊂α, значит МА⊥а. МВ⊥β, а⊂β, значит МВ⊥а. Так как прямая а перпендикулярна двум пересекающимся прямым плоскости АМВ, то она перпендикулярна этой плоскости, следовательно она перпендикулярна каждой прямой, лежащей в этой плоскости, ⇒ а⊥АС, а⊥ВС, ⇒∠АСВ = 90° - линейный угол двугранного угла; а⊥МС, ⇒ МС - искомое расстояние.
Дано: АВСД - трап (уг А=уг В=90*) МР - ср линия трапеции АС - диагональ АС=СД=ДА=20 см МР-?
Решение (используя т Пифагора): 1) СН - высота трапеции, СН=АВ, СН - высота р/б тр АСД, ⇒СН- медиана ( по св-ву р/б тр-ка), 2) рассм тр НСД ( уг Н=90*), по т Пифагора СН=√(400-100)=√300=10√3 см (= АВ) 3) Рассм тр АВС ( уг В=90*), по т Пифагора ВС=√(400-300)=√100=10 см 4) МР= 1/2(ВС+АД) по определению ср линии трапеции МР= 1/2(20+10)=15 см
Решение (без т Пифагора и "корней") 1) СН - высота трапеции, СН=АВ, СН - высота р/б тр АСД, ⇒СН- медиана ( по св-ву р/б тр-ка), АН=1/2*АД; АН=10 см. 2) АВСН - прямоугольник по определению, ⇒АН=ВС, ⇒ВС=10 см 3) МР= 1/2(ВС+АД) по опр ср линии трапеции МР= 1/2(20+10)=1/2*30=15 см