Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида. Евклидова геометрия занималась изучением простейших фигур на плоскости и в пространстве, вычислением их площади и объёма. Осноположником геометрии можно считать Евклида. В начале XX века великий французский архитектор Ле Корбюзье сказал: «Я думаю, что никогда до настоящего времени мы не жили в такой геометрический период. Все вокруг – геометрия». В развитии Геометрия можно указать четыре основных периода, переходы между которыми обозначали качественное изменение Геометрии.
Первый — период зарождения Геометрии как математической науки — протекал в Древнем Египте, Вавилоне и Греции примерно до 5 в. до н. э. Первичные геометрические сведения появляются на самых ранних ступенях развития общества. Зачатками науки следует считать установление первых общих закономерностей, в данном случае — зависимостей между геометрическими величинами. Этот момент не может быть датирован. Самое раннее сочинение, содержащее зачатки Геометрия, дошло до нас из Древнего Египта и относится примерно к 17 в. до н. э., но и оно, несомненно, не первое. Геометрические сведения того периода были немногочисленны и сводились прежде всего к вычислению некоторых площадей и объёмов. Они излагались в виде правил, по-видимому, в большой мере эмпирического происхождения, логические же доказательства были, вероятно, ещё очень примитивными. Геометрия, по свидетельству греческих историков, была перенесена в Грецию из Египта в 7 в. до н. э. Здесь на протяжении нескольких поколений она складывалась в стройную систему. Процесс этот происходил путём накопления новых геометрических знаний, выяснения связей между разными геометрическими фактами, выработки приёмов доказательств и, наконец, формирования понятий о фигуре, о геометрическом предложении и о доказательстве.Геоме́трия (от др. ... γεωμετρία, от γῆ — земля и μετρέω — измеряю) — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения. Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида.
По теореме Пифагора второй катет b²=c²-a²=12²-6²=144-36=108
b=√108=6√3 см
Объем призмы равен произведению площади основания на высоту.
Площадь прямоугольного треугольника равна половине произведения катетов.
ответ. 6√3·6·10=360√3 куб.см.
2) Обозначим а=b=12, с=16.
По теореме Пифагора найдем высоту равнобедренного треугольника
h²=a²-(c/2)²=12²-8²=144-36=108, h=√108=6√3 см.
Объем пирамиды V = 1/3 S·H=1/3 ·1/2· 16· 6√3=16√3 куб см
3) S (полн)= 2 S (осн) + S (бок)= 2π·R²+π·R·H
По условию R=D|2=15 см, S ( полн)=600 π кв. см.
600·π=2·π·(15)²+π·15·Н
600π=450π+15·π·Н,
15πН=150π
Н=10 см
V (цилиндра)= S (осн)·Н=π R²·H=π·15²·10=2250·π куб. см
4) Угол при вершине осевого сечения 120°, значит углы при основании (180°-120°)/2=30°
В прямоугольном треугольнике ( высота конуса перпендикулярна диаметру основания) против угла в 30° лежит катет, равный половине гипотенузы. Если высота 5, значит образующая 10.
По теореме Пифагора R²=10²-5²=100-25=75
R=5√3
V(конуса)= 1/3 S(осн)·Н=1/3 π(5√3)²·5=125π куб см.