Пусть продолжение AM за точку M пересекает BC (точнее, продолжение этого отрезка за точку С) в точке K. Тогда 1) Треугольник ABK - равнобедренный, так как ∠BKA = ∠KAD = ∠KAB; то есть BK = AB = 5; 2) AM = MK; тут можно сослаться на теорему Фалеса, а можно просто сказать, что ΔAMD = ΔKMC; поскольку есть пара равных сторон MD = MC и углы при равных сторонах тоже равны (из за параллельности оснований трапеции). То есть BM - медиана к основанию у равнобедренного треугольника ABK. Поэтому BM перпендикулярно AM, и BM = 3; (получился "египетский" треугольник).
Сделаем рисунок, соразмерный данным в условии задачи размерам. Пусть в треугольник АВС вписана окружность с центром М, и вокруг него же описана окружность с центром О. ОС- радиус описанной окружности и равен 25. ВН - биссектриса, высота и медиана треугольника АВС. ВН - срединный перпендикуляр к АС. Центр вписанной окружности лежит в точке пересечения биссектрис углов треугольника, центр описанной - на пересечении срединных перпендикуляров ⇒ центры вписанной и описанной окружности лежат на ВН. НС - половина основания АС и равна 24. Отношение катета и гипотенузы в треугольнике СОН - из троек Пифагора 7:24:25, ОН =7 ( можно проверить по т. Пифагора). МК - радиус окружности М, проведенный в точку касания. МК=МН Треугольник ВКМ прямоугольный и подобен треугольнику АНВ ( общий острый угол при В). АВ:ВМ=АН:КМ ВН=ВО+ОН=25+7=32 АВ=√(ВН²+АН²)=40 КМ=ОН+ОМ=7+ОМ ВМ=ВО-ОМ=25-ОМ 40:(25-ОМ)=24:(7+ОМ) 40*(7+ОМ)=24*(25+ОМ) 280+40*ОМ=24*25-24*ОМ 64 ОМ=320 ОМ=320:64=5 Расстояние между центрами вписанной и описанной окружностей треугольника равно 5
А В С
АС=7см
2)
С А В
АС=7см