Т.к. угол А = 120, то на два оставшихся угла приходится В+С = 180-120 = 60 градусов треугольник ВКС состоит из угла ВКС, половины угла В и половины угла С -- т.к. по условию проведены биссектрисы... угол ВКС = 180 - (В/2) - (С/2) = 180 - (В+С)/2 = 180 - 60/2 = 180 - 30 = 150
Если аб основание, тогда св боковая сторона, поскольку трапеция р/б, то св = ад = 10см, Проведём высоты из вершины тупых углов к большему основанию, обазначим их, как СМ и ДН. Получили два прямоугольных треугольника, которые равны по трём углам. Поскольку в р/б трапеции углы при основании равны, значит угол БСМ = углу АДН = 30градусам. АН и БМ из равенства треугольников равны. Также они лежат напротив угла в 30 градусов, соответсвенно равны 1/2 гипотенузы Т.е СВ, значит они равны 5 см. У нас остаётся отрезок МН = СД по свойству р/б трапеции. Поскоьку АБ=16, а АН и БМ 5 см, то НМ = СД = 6 см ответ: СД = 6 см
Можно воспользоваться признаками равенства треугольников по трём сторонам, а затем по двум сторонам и углу между ними, если вы его уже как аксиомами без доказательства. Нам известны две стороны, а медиана, упирающаяся в одну из них, образует третью сторону, делящую на равные отрезки одну из известных(получается как бы цифра 4, где косая черта - одна сторона, вертикальная - та, в которую уперлась медиана, а горизонтальная черта - сама медиана). У сравниваемых треуг-в Медианы равны, соответственно, поделенные ими равные отрезки равных сторон тоже равны, и ещё две стороны соответственно равны из условия - это признак равенства по трём сторонам, т.е. мы доказали, что эти части треугольников равны. А коли они равны, то и углы при них соответственно равны, а, значит, у нас есть признак равенства по 2м сторонам(косая и верт. черты) и углу между ними(вершина четверки). его и применяем. задача решена)
В+С = 180-120 = 60 градусов
треугольник ВКС состоит из угла ВКС, половины угла В и половины угла С -- т.к. по условию проведены биссектрисы...
угол ВКС = 180 - (В/2) - (С/2) = 180 - (В+С)/2 = 180 - 60/2 = 180 - 30 = 150