Легко. площадь треугольника равна (a*b*sinC)/2. коэфициент подобия к. тогда: рассмотрим 2 подобных треугольника: первый со сторонами х и у тогда его площадь s1=(ху*sinC)/2, по формуле, а у второго треугольника по подобию стороны равны к*х и к*у, поскольку углы у подобных треугольников одинаковы, а поэтому синусы тоже, то площадь s2=(k*x*k*y*sinC)/2 опять-таки по формуле, теперь узнаём соотношение s1/s2=(k*x*k*y)/xy(двойки и синусы самосократились) и получаем k к в квадрате
S=30*4=120 Р=(30+4)*2=68 пусть уменьшенная длина будет 30-у уменьшенная ширина 4-х новая площадь должна равняться 120/2 новый периметр 68-22=46 полупериметр 46/2=23 составим систему с 2-мя неизвестными:
(30-у)(4-х)=120/2 (30-у)+(4-х)=46/2
(30-у)(4-х)=60 30-у+4-х=23
(30-у)(4-х)=60 х+у=11
(30-у)(4-х)=60 (1) х=11-у (2)
подставляем наш х в (1) получаем (30-у)(4-х(11-у))=60 (30-у)(у-7)=60 30у-210-у²+7у-60=0 -у²+37у-270=0 Д=37²-4(-1)(-270)=1369-1080=289=17² у1=-27 нам не подходит т.к. сторона не может быть отрицательной у2=10
Первое, что нетрудно доказывается, --- треугольник АВК прямоугольный. Площадь прямоугольного треугольника = половине произведения катетов))) гипотенуза АВ = 4 --это очевидно из получившейся трапеции... а чтобы найти катеты не хватает известных углов))) на рисунке есть два равных треугольника: треугольник АВК равен половине равнобедренного треугольника с боковыми сторонами 4 ---по гипотенузе и острому углу))) из этого очевидно: АК = 2*КВ по т.Пифагора 4х² + х² = 16 ---> 5x² = 16 S(ABK) = (1/2)*x*2x = x² = 16/5 = 3.2