DM=3см, <BDC=25гр
Объяснение:
Странная задача, считать ничего и не надо.
1) Из равенства и параллельности AD=BC, AB=CD делаем вывод, что ABCD - параллелограмм. В нём <BDC=<ABD как накрест лежащие углы при параллельных отрезках AB и CD
2) Рассмотрим тр-ки BPC и DMA. У них AD=BC по условию, <BCP=<DAM как равные при проведении биссектрис от равных углов параллелограмма. А <PBC=<MDA как накрест лежащие при параллельных отрезках AD и BC. Значит тр-ки BPC и DMA равны по 2-му признаку и стало быть DM=BP=3см.
См. Объяснение
Объяснение:
255°.
1) Равными называются векторы (обозначены знаком ⁻), которые сонаправлены, и их длины равны:
⁻АВ = ⁻ED
⁻BC = ⁻FE
Примечание. В правильном шестиугольнике все стороны равны. Поэтому берём противоположные стороны (они параллельны) и задаём им одно и то же направление.
2) Два коллинеарных (то есть параллельных) вектора называются противоположно направленными, если их направления не совпадают:
⁻FA и ⁻CD
⁻FA и ⁻BE
Примечание. Аналогично п.1, только направляем в разные стороны.
3) Два коллинеарных (то есть параллельных) вектора называются сонаправленными, если их направления совпадают.
⁻ВС и ⁻AD
⁻FA и ⁻EB.
Примечание. Диагональ ⁻AD параллельна стороне ⁻ВС, но в 2 раза больше. Диагональ ⁻ЕВ параллельна стороне ⁻FA, но в 2 раза больше.
257°.
Чтобы найти координаты вектора, необходимо от соответствующих координат конца вектора отнять координаты начала.
Для вектора ⁻АВ:
3 - 1 = 2 - это координата х;
7 - 2 = 5 - это координата у;
6 - 3 = 3 - это координата z.
⁻АВ = {2; 5; 3}
Аналогично для ⁻ВА:
⁻ВА = {-2; -5; -3}
Задание без номера.
х = а;
у = 2а;
z = - а.
Находим модуль:
√(а² + (2а)² +(-а)²) = √6а²
√6а² = √54
6а² = 54
а = 3
2а = 2 · 3 = 6
- а = - 3
Координаты вектора ⁻а:
⁻а = {3; 6; -3}
180:(1+2+3)=30
значит углы 1*30=30, 2*30=60 и 3*30=90
2) у равнобедренного треугольника боковые стороны равны
Р=2а+в=2*4+8=16 или 2*8+4=20
Р=2*3+6=12 или 2*6+3=15
3) напротив меньшего угла лежит меньший катет
Меньший угол равен 180-90-60=30
а) а=с*sin 30=20*1/2=10
б) а=10*1/2=5