Площа трикутника за найпоширенішою формулою рівна половині добутку основи на висоту, проведеної до неї. Виконуємо обчислення
S= 24*16/2=192 (кв. см.)
Для визначення периметру нам потрібно відшукати довжину бічної сторони.
У рівнобедреному трикутнику висота, проведена до основи в, є бісектрисою і медіаною.
За теоремою Піфагора знаходимо бічну сторону трикутника
b=sqrt(16^2+(24/2)^2)=20 (cм)
Периметр - сума всіх сторін
P= 2*20+24=64 (см)
Знаходимо радіус вписаного в трикутник кола за формулою
r=S/(2*P)=192/(64/2)=192/32=6 (см).
ЗАДАЧА 2 Основа рівнобедреного трикутника дорівнює 24 см бічна сторона 13 см. Обчисліть площу трикутника?
Розв'язання: Площа рівна пів добутку основи на висоту.
Основа нам відома, висоту знаходимо за теоремою Піфагора
h=√(b²-a²/4)= √(169-144)=5 (см).
Далі обчислюємо площу
S=a*h/2=24*5/2=60 (см. кв.)
Объяснение:
здесь работает признак равенства треугольника, не помню номера но ты поймешь,
соединим точку A и x, ну и B и x соответственно тоже, образовалось 2 треугольника:
AOX и BOX. стороны АО и ВО равны по условию( точка О середина АВ) , а так-же присутствует общая сторона ОХ, ну и углы при вершине О у этих двух треугольников по 90 град. ( ОХ-перпендикуляр по условию) => эти треуг. =
=>соответственные стороны у них = из этого можно сделать прямой вывод, что АХ=ВХ
=> этот значок не улыбка, он обозначает слово ''следовательно''(ну так, на всякий случай)