М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
RыBкA109
RыBкA109
28.02.2020 14:21 •  Геометрия

Периметр четырёх угольника равняется 20 см.найдите стороны четырёх угольника если один из них равняет 40% периметра а три другие равные. учитель схавает

👇
Ответ:
tanyakill9087
tanyakill9087
28.02.2020
1) 100%-40%=60% это 3 другие стороны
2) 60% : 3= 20% это 1 сторона
3) 20 (см) * 40%= 8 (см) это большая сторона
4) 20 * 20% = 4 (см) это другая сторона
Но те 3 стороны равны
Можно проверить
8 см + 4см +4см +4см=20 см
4,8(35 оценок)
Открыть все ответы
Ответ:
RIKk456
RIKk456
28.02.2020
Четырехугольник может быть описанным,  если суммы противоположных  сторон  равны.  Значит сумма боковых сторон трапеции равна 9-4=13.  В  равнобедренной трапеции боковые стороны равны.  Значит боковая сторона  равна  6,5.  Высоты,  проведенные из тупых  углов  трапеции,  делят  большее основание  на отрезки  2,5,  4,  2,5.
Применим теорему  Пифагора  к треугольнику,  образованному боковой стороной трапеции,  её высотой и  отрезком  большего основания  трапеции..  Высота  является катетом  этого  треугольника
Н=\sqrt{ 6,5^{2}- 2.5^{2} }=6
Sтрапеции=\frac{(9+4)*6}{2}=39
4,7(18 оценок)
Ответ:
samirdebilGost
samirdebilGost
28.02.2020
Если двугранные углы при основании равны. То, опустив все четыре апофемы и высоту пирамиды, найдем, что отрезки, соединяющие основание высоты пирамиды с основаниями апофем, равны по длине. Докажем это. Опустив одну апофему и проведя соответствующий отрезок, соединяющий высоту пирамиды и основание апофемы, найдем, что высота - это перпендикуляр, а апофема - это наклонная, причем эта наклонная перпендикулярна соответствующей стороне основания пирамиды, тогда по теореме обратной теореме "о трех перпендикулярах" найдем, что отрезок, соединяющий основание высоты и основание апофемы перпендикулярен стороне основания, и апофема и этот отрезок образуют линейный угол двугранного угла. Но т. к. по условию все двугранные углы равны, то равны и все отрезки, соединяющие основания высоты и апофем (это следует из равенства прямоугольных треугольников, каждый из которых составлен из высоты, апофемы и отрезка, соединяющего их основания). Что мы имеем? Т.к. указанные отрезки равны и перпендикулярны сторонам основания, то отсюда следует, что основание высоты пирамиды - это центр вписанной в основание окружности. Таким образом у нас есть две точки основания:
центр вписанной окружности (он же - основание высоты пирамиды) и точка пересечения диагоналей основания. Нужно теперь доказать, что эти точки не совпадают. По условию, основанием является равнобокая трапеция. Высота этой трапеции - это диаметр вписанной окружности, отсюда можно заключить, что центр вписанной окружности, находится на одинаковом расстоянии от оснований трапеции. Для точки пересечения диагоналей этого сказать нельзя. Пусть ABCD - это данная равнобокая трапеция, являющаяся основанием данной в условии пирамиды. Причем AD - большее основание, BC - меньшее основание трапеции. Пусть т. F - точка пересечения диагоналей. Проведя диагонали трапеции AC и BD. Найдем, что треугольники AFD и CFB подобны по двум углам (накрест лежащие углы при параллельных прямых AD и BC и секущих BD и AC равны). Но коэффициент подобия этих треугольников не равен 1 (k = AD/BC, но AD>BC, поэтому AD/BC>1), то есть эти треугольники не равны, а значит неравны и их высоты, проведенные из т. F, что означает, что т. F не равноудалена от оснований трапеции, в отличии о центра вписанной в трапецию окружности. ЧТД.
4,4(76 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ