угол AOB=COD как вертикальный...в прямоуг-ке диагонали равны и точко пересечения делятся пополам,значит CO=DO => угол COD=BDC (теорема об отношениях сторон к углам - против равных сторон лежат равные углы).
раз 1 из углов равен 50 градусов то 2 других в сумме 130 а по отдельности 65 градусов))
Объяснение:
См. рисунок к задаче.
Пусть дан ΔАВС (АВ = ВС), Р(АВС) = 36 см, АВ : АС = 5 : 8. ВМ ⊥ АС,
ВМ = 6 см.
Найдем: 1) ВС; 2) Р(ВМС).
Т.к. АВ = ВС, то Р(АВС) = АВ + ВС + АС = 2АВ + АС.
Пусть АВ = (5х) см, АС = (8х) см, то составим и решим уравнение
2 · 5х + 8х = 36,
10х + 8х = 36,
18х = 36,
х = 36 : 18,
х = 2.
Значит, АВ = ВС = 5 · 2 = 10 (см), АС = 8 · 2 = 16 (см).
Т.к. ВМ - высота, проведенная к основанию АС, то по свойству равнобедренного треугольника ВМ - медиана, следовательно,
АМ = МС = АС/2 = 16 : 2 = 8 (см).
Тогда Р(ВМС) = ВС + ВМ + МС = 10 + 6 + 8 = 24 (см).
ответ: 1) 10 см; 2) 24 см.
AC:16=7:3––АС=16•7:3=28 см
Объяснение:
Примем коэффициент отношения отрезков на АВ равным а,Так как AM : MB = 3:4, то АВ=АМ+ВМ=7а ⇒ AM:AB = 3:7.
CN:CB = 3:7- дано.
а) Точки М и N лежат в плоскости ∆ АВС и в плоскости α. ⇒MN - линия пересечения этих плоскостей.
МN и АС высекают на прямых АВ и ВС пропорциональные отрезки.
Из обобщённой теоремы Фалеса: если отрезки, высекаемые прямыми на одной прямой, пропорциональны отрезкам, высекаемым теми же прямыми на другой прямой, то эти прямые параллельны.⇒ АС║MN.
Если прямая (АС), не лежащая в плоскости α, параллельна некоторой прямой (MN), которая лежит в плоскости α, то прямая параллельна плоскости . ⇒АС || α
б) Т.к. MN║AC, углы при их пересечении секущими АВ с одной стороны и ВС с другой равны как соответственные. Отсюда следует подобие треугольников MBN и ABC с коэффициентом подобия k=BC:NC=7:3 ⇒ AC:MN=7:3
AC:16=7:3––АС=16•7:3=28 см
Угол АОВ=СОД=50 градусам как вертикальные. По свойству прямоугольника диагонали равны и точкой пересечения делятся пополам. Значит треугольник СОД равнобедренный, и угол СОД равенн (180-50)/2=65 градусов