Углы при верхнем основании равны по 120 градусов
Углы при нижнем основании равны по 60 градусов
Объяснение:
Проведём две высоты. Получим одинаковые прямоугольные треугольники внутри трапеции. Нижний катет будет равен 1, т.к. (7-5)/2=1
1 = 2/2, т.е. этот катет равен половине гипотенузы, а значит лежит против угла 30 градусов. В середине трапеции образовался прямоугольник, углы которого равны по 90 градусов. 90 + 30 = 120 градусов углы при верхнем основании.
Сумма углов при боковой стороне должна равняться 180 градусов. 180-120 = 60 градусов углы при нижнем основании.
Отрезки МК и NP параллельны соседним сторонам прямоугольника, => соответственно равны им, пересекаются под прямым углом и делят АВСD на 4 прямоугольника, (неважно, равной или разной площади). Обозначим точку пересечения МК и NP буквой О.
а)
Стороны четырехугольника МNKP являются диагоналями получившихся прямоугольников и делят каждый из них пополам (свойство). Поэтому площадь MNKP равна сумме площадей этих половин, т.е. равна половине площади ABCD.
б)
Площадь выпуклого четырехугольника равна половине произведения его диагоналей на синус угла между ними.
Так как S(ABCD)=AB•CD, МК=АD и NP=AB, а sin90°=1, то S(MNKP)=MK•NP•sin90°=0,5•S(ABCD).
в)
S(MNKP)=S∆MNP+S∆NKP=0.5•MO•NP+0.5•KO•NP=0,5•NP•(MO+OK) => S(MNKP)=0,5•NP•MK =>
S(MNKP) =0,5•S(ABCD), т.к. NP=AB и МК=АD