Обозначим другой катет треугольника за x. Тогда по теореме Пифагора гипотенуза будет равна . Из этого следует, что длина гипотенузы может быть любым числом, большим 10.
Пусть тркугольник ABC ,ромб СLMN тк ромб частный случай параллелограмма то ML паралельно BC отсюда угол LMA тоже прямой,тогда прямоугольные треугольники ABC и AML подобны по общему острому углу соответственно треугольник AML тоже равнобедренный тогда AM=ML=a где а-сторона ромба тогда из теоремы пифагора AC=b*sqrt(2)=AL+a=a*sqrt(2)+a=a(sqrt(2)+1) b-известный катет откуда a=b*sqrt(2)/(1+sqrt(2))=(2+sqrt(2))*sqrt(2)/5*(1+sqrt(2))=sqrt(2)*(1+sqrt(2))*sqrt(2)/5*(1+sqrt(2))=sqrt(2)*sqrt(2)/5=2/5=0,4
Пусть тркугольник ABC ,ромб СLMN тк ромб частный случай параллелограмма то ML паралельно BC отсюда угол LMA тоже прямой,тогда прямоугольные треугольники ABC и AML подобны по общему острому углу соответственно треугольник AML тоже равнобедренный тогда AM=ML=a где а-сторона ромба тогда из теоремы пифагора AC=b*sqrt(2)=AL+a=a*sqrt(2)+a=a(sqrt(2)+1) b-известный катет откуда a=b*sqrt(2)/(1+sqrt(2))=(2+sqrt(2))*sqrt(2)/5*(1+sqrt(2))=sqrt(2)*(1+sqrt(2))*sqrt(2)/5*(1+sqrt(2))=sqrt(2)*sqrt(2)/5=2/5=0,4
Из этого следует, что длина гипотенузы может быть любым числом, большим 10.