1) Удалите номера неверных утверждений:
1. Если один из острых углов прямоугольного треугольника равен 73о, то второй острый угол равен 27о. - неверно, 17°
2. Если углы при основании равнобедренного треугольника равны по 60о, то такой треугольник – правильный. - верно, третий угол тоже 60°
3. Существует треугольник со сторонами 3,4,5. - существует, это прямоугольный треугольник, "египетский"
2) Удалите номер верных утверждений:
1. Если два катета одного треугольника соответственно равны двум катетам другого треугольника, то такие треугольники равны. - верно
2. Если две параллельные прямые пересечены секущей, то сумма односторонних углов равна 180о. - верно
3. Если в треугольнике два угла равны, то он равнобедренный. - верно
3) Сформулируйте теорему о катете прямоугольного треугольника, лежащего против угла в 30 градусов. - Катет, лежащий против угла 30 градусов, равен половине гипотенузы.
4) Острые углы прямоугольного треугольника относятся как 12:18. Найдите эти углы.
Сумма острых углов прямоугольного треугольника составляет 90 градусов. Пусть ∠1=12х°, ∠2=18х°, тогда 12х+18х=90; 30х=90; х=3.
∠1=12*3=36°; ∠2=18*3=54°
ответ: 36°, 54°
Площадь S1 боковой поверхности призмы равна произведению периметра перпендикулярного сечения призмы на её боковое ребро. Плоскость перпендикулярного сечения пересекает боковые грани по их высотам. Поэтому периметр перпендикулярного сечения равен сумме этих высот, т. е. 3*2=6.
Значит, S1 = 3al = 18
ПустьS -- площадь основания призмы. Площадь ортогональной проекции основания призмы на плоскость, перпендикулярную боковым рёбрам, равна площади перпендикулярного сечения, делённой на косинус угла между плоскостями основания и перпендикулярного сечения. Этот угол равен углу между боковым ребром и высотой призмы, т. е. 60∘.
Поэтому
S2= 2√3Следовательно, площадь полной поверхности призмы равна