из упражнения баллов Упражнение 407. Сделайте морфологический разбор нескольких числительных
из упражнения баллов Упражнение 407. Сделайте морфологический разбор нескольких числительных
из упражнения баллов Упражнение 407. Сделайте морфологический разбор нескольких числительных
из упражнения баллов Упражнение 407. Сделайте морфологический разбор нескольких числительных
из упражнения баллов Упражнение 407. Сделайте морфологический разбор нескольких числительных
из упражнения баллов Упражнение 407. Сделайте морфологический разбор нескольких числительных
из упражнения баллов Упражнение 407. Сделайте морфологический разбор нескольких числительных
из упражнения баллов Упражнение 407. Сделайте морфологический разбор нескольких числительных
из упражнения баллов Упражнение 407. Сделайте морфологический разбор нескольких числительных
из упражнения баллов Упражнение 407. Сделайте морфологический разбор нескольких числительных
из упражнения баллов Упражнение 407. Сделайте морфологический разбор нескольких числительных
из упражнения баллов Упражнение 407. Сделайте морфологический разбор нескольких числительных
из упражнения баллов Упражнение 407. Сделайте морфологический разбор нескольких числительных
из упражнения баллов Упражнение 407. Сделайте морфологический разбор нескольких числительных
из упражнения баллов Упражнение 407. Сделайте морфологический разбор нескольких числительных
из упражнения баллов Упражнение 407. Сделайте морфологический разбор нескольких числительных
из упражнения баллов Упражнение 407. Сделайте .
(AC1/C1B)*(BA1/A1C)*(CB1/B1A) = 1; B1 - точка пересечения C1A1 и AC; вообще то тут стоит -1; но про ориентацию отрезков в данном случае можно забыть.
Пусть B1C = y; B1A = x;
(2/5)*(6/1)*y/(x + y) = 1; Это применена теорема Менелая к треугольнику ABC.
x + y = (12/5)*y; x = (7/5)*y; AM = MC = x/2 = (7/10)*y; MB1 = y + x/2 = (17/10)*y;
Теперь теорема Менелая применяется к треугольнику ABM (можно и к CBM);
(AC1/C1B)*(BN/NM)*(MB1/B1A) =1;
(2/5)*(BN/NM)*(17/10)/(12/5) = 1;
BN/NM = 60/17;
Для тех, кто не знаком с теоремой Менелая (которая доказывается элементарно), есть такой вариант решения (коротко)
Если провести параллельные AC прямые через C1 и A1, то стороны и медиана разобьются на куски в пропорциях 5:1:1, считая от вершины B.
Получилась трапеция с основаниями (5/7)*x и (6/7)*x; x = AC; в которой C1A1 - диагональ. Она делит заключенный между "основаниями" кусок медианы в пропорции 5/6, считая от меньшего.
То есть, если медиана m, то между основаниями (1/7)*m; и эта "седьмушка" делится на куски (5/11)*(1/7)*m и (6/11)*(1/7)*m;
нужное отношение
BN/NM = ((5/7)*m + (5/11)*(1/7)*m)/((1/7)*m + (6/11)*(1/7)*m) = 60/17