В трапеции ABCD основания AD и BC относятся как 3:2, а сумма углов при основании AD равна 90°. Найдите радиус окружности, проходящей через точки A и B и касающейся прямой CD, если AB = 3.
===========================================================
Продолжения боковых рёбер трапеции пересекаются в точке Е и образуют прямоугольный треугольник АЕD, ∠EAD + ∠EDA = 90° - по условиюΔBCE подобен ΔAED по двум углам (∠AED - общий, ∠ЕВС = ∠EAD - как соответственные углы при BC || AD и секущей АВ)BC/AD = BE/AE ; 2/3 = BE/(AB + BE) 2/3 = BE/(3 + BE) ⇒ 6 + 2BE = 3BE ⇒ BE = 6▪Радиус, проведённый в точку касания, перпендикулярен касательной ⇒ OM⊥DM▪Радиус, перпендикулярный хорде, делит её пополам ⇒ OH⊥AB, AH = HB = AB/2 = 3/2 = 1,5В четырёхугольнике ОМЕН все углы прямые ⇒ ОМЕН - прямоугольник.Значит, НЕ = ОМ = R = HB + BE = 1,5 + 6 = 7,5ОТВЕТ: R = 7,5В трапеции ABCD основания AD и BC относятся как 3:2, а сумма углов при основании AD равна 90°. Найдите радиус окружности, проходящей через точки A и B и касающейся прямой CD, если AB = 3.
===========================================================
Продолжения боковых рёбер трапеции пересекаются в точке Е и образуют прямоугольный треугольник АЕD, ∠EAD + ∠EDA = 90° - по условиюΔBCE подобен ΔAED по двум углам (∠AED - общий, ∠ЕВС = ∠EAD - как соответственные углы при BC || AD и секущей АВ)BC/AD = BE/AE ; 2/3 = BE/(AB + BE) 2/3 = BE/(3 + BE) ⇒ 6 + 2BE = 3BE ⇒ BE = 6▪Радиус, проведённый в точку касания, перпендикулярен касательной ⇒ OM⊥DM▪Радиус, перпендикулярный хорде, делит её пополам ⇒ OH⊥AB, AH = HB = AB/2 = 3/2 = 1,5В четырёхугольнике ОМЕН все углы прямые ⇒ ОМЕН - прямоугольник.Значит, НЕ = ОМ = R = HB + BE = 1,5 + 6 = 7,5ОТВЕТ: R = 7,5
∠А + ∠В=65°
Значит
∠А = 65° - ∠В
∠А =35°
Сумма смежных углов равна 180°. Внешний угол при вершине А и угол А - смежные.
Внешний угол при вершине А равен
180° - ∠А = 180° -35° = 145°
Или второй
Угол С и внешний угол при вершине С - смежные, их сумма 180°
∠С=180°-65°=115°
∠В = 30°
Сумма углов треугольника 180°
∠А + ∠В + ∠С = 180°
∠А = 180° - ∠В - ∠ С
∠А=180°- 30° - 115°=35°
ответ. внешний угол при вершине А равен 35°