МВ - перпендикуляр к плоскости прямоугольника, тогда
ВА - проекция наклонной МА на плоскость (АВС), значит
∠МАВ = 45°,
ВС - проекция наклонной МС на плоскость (АВС), значит
∠МСВ = 30°.
а) ВА⊥AD как стороны прямоугольника, ВА - проекция МА на (АВС), значит МА⊥AD по теореме о трех перпендикулярах, значит
ΔMAD прямоугольный.
ВС⊥CD как стороны прямоугольника, ВС - проекция МС на (АВС), значит МС⊥CD по теореме о трех перпендикулярах, значит
ΔMCD - прямоугольный.
б) ΔМВА прямоугольный с углом 45°, значит равнобедренный,
АВ = МВ = 4 см
ΔМВС: ∠МВС = 90°,
tg ∠MCB = MB / BC
tg30° = 4 / BC
BC = 4 / (1/√3) = 4√3 см
в) ΔBDC - прямоугольный,
Sbdc = BC · CD / 2 = 4 · 4√3 / 2 = 8√3 см²
Пусть боковая сторона равнобедренного треугольника будет х см, тогда основание - (x-10) см. Периметр равнобедренного треугольника равен 110 см.
Составим уравнение
, где а - сторона основания и b - боковая сторона.
Итак, боковая сторона равна - 40см, а сторона основание - (x-10)=(40-10)=30 см
ответ: 30см, 40см и 40см.