Из трапеции АВСD имеем: углы ВОС и АОD равны как вертикальные, углы ОАD и ОСВ, а также углы ODA и ОВС равны как внутренние разносторонние. Следовательно, треугольники BOC и AOD подобны по трем углам. Из теоремы подобных треугольников: отношение площадей подобных треугольников равно квадрату коэффициенту их подобия, то есть S(AOD)/S(BOC) = k^2. Имеем: k^2 = 27/3, k^2 = 9, k = 3. Стороны подобных треугольников пропорциональны: AO/OC = k, имеем: 6/OC = 3, OC = 6/3, OC = 2. АС = АО + ОС, АС = 6 + 2 = 8. ответ: 8.
Эта задача на много проще, чем кажется. Если из центра окружности (который лежит на гипотенузе) опустить перпендикуляры на катеты, то получится квадрат и два треугольника, подобных исходному. Если обозначить радиус окружности r, больший катет большего треугольника b, меньший катет меньшего треугольника a, то стороны исходного треугольника будут такие (a + r, b + r, 35) стороны меньшего треугольника (a, r, 15) стороны большего (r, b, 20) и все эти три треугольника подобны между собой. отсюда a/r = 15/20 = 3/4; то есть все эти три треугольника - египетские (подобные треугольнику со сторонами 3, 4, 5) То есть уже можно написать ответ :) вычислять уже ничего не надо, надо просто "подобрать" коэффициенты подобия, чтобы гипотенузы египетских треугольников были бы 15 и 20. Само собой, это 3 и 4. То есть a = 9, r = 12, b = 16; (получились треугольники 9, 12, 15 и 12, 16, 20) Исходный треугольник имеет стороны 21, 28, 35, его площадь 294; длина полуокружности πr = 12π;
Весь "трюк" в том, что r - одновременно больший катет в одном из подобных треугольников и меньший - в другом.
b(2;5)=2e1+5e2
c(-1,3)=-e1+3e2.