Треугольники подобны по первому признаку подобия: два угла одного треуг-ка соответственно равны двум углам другого. В нашем случае угол М является общим для обоих треугольников AMD и BMC, а угол BCM треугольника ВМС соответственно равен углу A треугольника AMD . Докажем, что это так. 1). Пользуясь тем, что в любом вписанном четырехугольнике сумма противоположных углов равна 180 градусов, запишем: <A+<BCD=180°, отсюда <A=180°-<BCD 2). Рассмотрим вписанный угол BCD. Он опирается на дугу окружности BAD, следовательно, равен ее половине: <BCD=1/2 BAD. 3). Подставим в 1) значение для угла BCD: <A=180°-1/2 BAD 4). Рассмотрим треуг-ик ВМС. Здесь угол ВСМ можно выразить как <BCM=180°-<BCD. Подставим сюда полученное в 2) значение для угла BCD: <BCM=180°-1/2 BAD 5). Из 3) и 4) выражений видно, что <A=<BCM, что и требовалось доказать.
АВ=ВС, АВ - диаметр окружности. Окружность пересекает стороны АС и ВС в точках М и Н соответственно. ВН=7 см, МС=3 см. Построим отрезки ВМ и АН, которые пересекаются в точке К. ∠ВМА=∠ВНА=90° так как они вписанные в окружность и опираются на дугу в 180°. В равнобедренном тр-ке АВС ВМ⊥АС, значит АМ=МС ⇒ АС=2МС=6 см. Тр-ки АНС и ВМС подобны т.к. ∠С - общий и оба прямоугольные. Пусть НС=х, ВС=ВН+НС=7+х. ВС/МС=АС/НС, (7+х)/3=6/х, 7х+х²=18, х²+7х-18=0, х>0, значит х≠-9, х=2. НС=2 см, АВ=ВС=7+2=9 см - это ответ.
АВ=ВС, АВ - диаметр окружности. Окружность пересекает стороны АС и ВС в точках М и Н соответственно. ВН=7 см, МС=3 см. Построим отрезки ВМ и АН, которые пересекаются в точке К. ∠ВМА=∠ВНА=90° так как они вписанные в окружность и опираются на дугу в 180°. В равнобедренном тр-ке АВС ВМ⊥АС, значит АМ=МС ⇒ АС=2МС=6 см. Тр-ки АНС и ВМС подобны т.к. ∠С - общий и оба прямоугольные. Пусть НС=х, ВС=ВН+НС=7+х. ВС/МС=АС/НС, (7+х)/3=6/х, 7х+х²=18, х²+7х-18=0, х>0, значит х≠-9, х=2. НС=2 см, АВ=ВС=7+2=9 см - это ответ.
1). Пользуясь тем, что в любом вписанном четырехугольнике сумма противоположных углов равна 180 градусов, запишем:
<A+<BCD=180°, отсюда
<A=180°-<BCD
2). Рассмотрим вписанный угол BCD. Он опирается на дугу окружности BAD, следовательно, равен ее половине:
<BCD=1/2 BAD.
3). Подставим в 1) значение для угла BCD:
<A=180°-1/2 BAD
4). Рассмотрим треуг-ик ВМС. Здесь угол ВСМ можно выразить как <BCM=180°-<BCD. Подставим сюда полученное в 2) значение для угла BCD:
<BCM=180°-1/2 BAD
5). Из 3) и 4) выражений видно, что <A=<BCM, что и требовалось доказать.