Обозначим параллелограмм АОСР, где диагонали АС и ОР пересекаются в точке В. Найдем координаты точек С и Р.
Точка С(3;4)
Точка P(0;4) Точки А и О лежат на оси Ох, т е уравнение прямой АО у=0, С и Р лежат на прямой у=4, т е уравнение прямой РС у=4. Точки А и Р лежат на прямой у=kx+b, для A: 0=-3k+b, для P: 4=0*k+b , отсюда b=4, k=4/3, т е уравнение прямой АР у=4/3х+4. Точки О и С лежат на прямой у=kx+b, для О: 0=0*k+b, для С: 4=3*k+b , отсюда b=0, k=4/3, т е уравнение прямой ОС у=4/3х. ответ: уравнения сторон параллелограмма у=0, у=4, у=4/3х+4,
Решим через формулу площади треугольника: S=1/2 * a * h_a, где a - одна из сторон треугольника, h_a - высота, проведенная к ней. То есть, зная все стороны и все высоты, можно найти площадь тремя три стороны). Так вот, известно две стороны и высота, проведенная к первой стороне. Обозначим первую сторону как a, вторую сторону как b, высоту, проведенную к первой стороне, как h_a, высоту, проведенную ко второй стороне, как h_b. С одной стороны, площадь равна S = 1/2 * a * h_a, с другой стороны, S = 1/2 * b * h_b. Приравниваем эти выражения: 1/2 * a * h_a = 1/2 * b * h_b Отсюда h_b = a * h_a / b. Подставим значения, данные в условии: h_b = 16 * 1 / 2 = 8.
a) Найдем площадь треугольника. Площадь треугольника равна половине произведения его стороны на высоту, проведенную к этой стороне (h₁ = 16 см)
S = 1/2 * a * h₁
S = 1/2 * 15 * 16 = 240/2 = 120 см²
Подставим неизвестную высоту h
120 = 1/2 * 20 * h
120 = 10h
h = 120/10
h = 12 см
ответ: h = 12 см
b) Треугольник прямоугольный. площадь прямоугольного треугольника равна половине произведения его катетов
S = 1/2 * 3 * 4 = 12/2 = 6 см²
Подставим площадь в формулу S = 1/2 * a * h
6 = 1/2 * 5 * h
6 = 2,5h
h = 6/2,5
h = 2,4 см
ответ: h = 2,4 см
c) Треугольник прямоугольный. Найдем его неизвестный катет по теореме Пифагора
b² = 29² - 20²
b² = 841 - 400
b² = 441
b = 21 см
Далее его площадь через произведение половины катетов
S = 1/2 * 20 * 21 = 10 * 21 = 210 см²
210 = 1/2 * 29 * h
210 = 14,5h