Так как точки А, В, С не лежат на одной прямой, существует единственная плоскость а, проходящая через эти точки. То есть, а=(АВС).
Если две точки прямой принадлежат плоскости, то и вся прямая (все точки прямой) принадлежит этой плоскости. Значит, прямая АВ принадлежит а, тогда и М принадлежит а. Аналогично, прямая АС принадлежит а, тогда и К принадлежит а. Из этого следует, что прямая МК также принадлежит плоскости а. Но тогда любая точка этой прямой, в том числе точка Х, принадлежит а, что и требовалось.
АВС - осевое сечение конуса. Тр-к АВС - равнобедренный. ВО - высота конуса - высота сечения, биссектриса и медина, проведенная из вершины В. Угол АВО равен углу ОВС = а. К - центр описанной около треугольника АВС окружности.КМ - высота и медиана равнобедренного тр-ка ВКС. ВМ= МС =ВК умнож на синус угла а, ВК = радиусу опис окружности. ВС = 2ВМ.Тогда высота конуса ОВ = ВС умножить на косинус угла а. ОВ = двум радиусам умноженным на синус угла а и на косинус угла а = радиус умножить на синус двойного угла а.
Основанием пирамиды dabc является правильный треугольник abc сторона которого = .ребро da перпендикулярно к плоскости авс, а плоскость dbc составляет с плоскостью авс угол 30*. найдите площадь боковой поверхности пирамиды. условие такое? если такое, то вот решение : s(бок) = 2s(адс) + s(всд) угол дка = 30, тогда ад = ак* tg30 = (av3/2)*v3/3 =a/2 тогда s(асд) = 1/2*а*а/2 = а^2 / 4 дк = а, тогда s(всд) = 1/2*а*а = а^2 / 2 s(бок) = 2*(а^2 / 4) * (а^2 / 2) = а^2
Если две точки прямой принадлежат плоскости, то и вся прямая (все точки прямой) принадлежит этой плоскости. Значит, прямая АВ принадлежит а, тогда и М принадлежит а. Аналогично, прямая АС принадлежит а, тогда и К принадлежит а. Из этого следует, что прямая МК также принадлежит плоскости а. Но тогда любая точка этой прямой, в том числе точка Х, принадлежит а, что и требовалось.