1. Треугольник АВС и А₁В₁С₁ подобны. ВС и В₁С₁, АС и А₁С₁ сходственные стороны. Найдите величину АВ и отношение площадей этих треугольников, если АС : А₁С₁ = 3 : 4, А₁В₁ = 12 см.
2. Две сходственные стороны подобных треугольников равны 2 см и 5 см. Площадь первого треугольника равна 8 см². Найти площадь второго треугольника.
1. АВ = 9 см
Sabc : Sa₁b₁c₁ = 9 : 16
2. 50 см²
Объяснение:
1. ΔАВС ~ ΔА₁В₁С₁, значит
АВ : А₁В₁ = АС : А₁С₁ = k
АВ : 12 = 3 : 4
АВ = 12 · 3 / 4 = 9 см
Отношение площадей подобных треугольников равно квадрату коэффициента подобия:
Sabc : Sa₁b₁c₁ = k²
Sabc : Sa₁b₁c₁ = (3/4)²
Sabc : Sa₁b₁c₁ = 9 : 16
2.
Треугольники подобны, значит
k = 2/5
Отношение площадей подобных треугольников равно квадрату коэффициента подобия:
S₁ : S₂ = 4 : 25
8 : S₂ = 4 : 25
S₂ = 8 · 25 / 4 = 50 см²
1. Все точки на оси абсцис имеют координату игрек равную 0.
Обозначим искомую точку как С(х; 0)
Тогда AC = BC
√((х+2)^2 + (0-6)^2) = √((х-7)^2 + (0-3)^2)
(х+2)^2 + 36 = (х-7)^2 + 9
х^2+4х+4+36 = х^2-14х+49+9
4х+40 = -14х+58
18х = 18
х = 1
ответ: С(1;0)
2. Чтобы этот четырёхугольник был параллелограмом, средины его диагоналей должны находится в одной точке.
Найдём средину АС: Μ((1+9)/2; (1-1)/2) = M(5; 0)
Найдём средину BD: (тут походу ошибка в условии, вместо одного из двух чисел 5 должно быть -5, допустим, у D вторая координата должна равнятся -5) N((3+7)/2; (5-5)/2) = N(5;0)
M совпадает с N, значит, данный четырёхугольник является параллелограмом.
АС = √((9-1)^2+(-1-1)^2) = √(64+4) = √68 = 2√17 см
ВD = √((7-3)^2+(-5-5)^2) = √(16+100) = √116 = 2√29 см
3. С треугольника NMO: MO = NO*ctg45° = 6*1 = 6 см
MN = NO/sin45* = 6√2 см
С треугольника NKO: NK = √(NO^2+KO^2) = √(36+16) = √52 = 2√13 см
Формула медианы треугольника:
m = 1/2*√(2a^2+2b^2-c^2), где a, b - прилегающие стороны, с - противолежащая сторона.
m = 1/2 * √(2*72+2*100-52) = 1/2 * √292 = √73 см