Параллелограмм АВСД, ВН биссектриса на АД , АН=14, НД=7, АД=14+7=21=ВСТреугольник АВН равнобедренный угол АНВ=углу НВС как внутренние разносторонние==углу АВН (ВН-биссектриса), АН=АВ=СД=14Периметр = 21+21+14+14=70Возможен другой вариантПериметр = 21+21+7+7=56 типо такого
АБС - равнобедренный, так как углы при основании равны
угол Б - 112 градусов, а по теореме о сумме углов в треугольнике мы знаем, что сумма углов равна 180 градусам, из чего следует, что углы А+С=180-112=68 градусам так как углы при основании равны, из этого следует, что А=С=68:2=34 градусам углы в треугольнике найдены
Теперь найдем любой внешний угол, пусть это будет угол при основании АС угол БАК ПО теореме о внешнем угле мы знаем,что внешний угол равен сумме двух других углов, не смежных с ним, из чего следует, что угол БАК=34+112=146 градусам
АБС - равнобедренный, так как углы при основании равны
угол Б - 112 градусов, а по теореме о сумме углов в треугольнике мы знаем, что сумма углов равна 180 градусам, из чего следует, что углы А+С=180-112=68 градусам так как углы при основании равны, из этого следует, что А=С=68:2=34 градусам углы в треугольнике найдены
Теперь найдем любой внешний угол, пусть это будет угол при основании АС угол БАК ПО теореме о внешнем угле мы знаем,что внешний угол равен сумме двух других углов, не смежных с ним, из чего следует, что угол БАК=34+112=146 градусам