Сторони основи прямокутного паралелепіпеда дорівнюють 3 і 6 см а діагональ паралелепіпеда 7 см. знайти повну площу поверхні паралелепіпеда.іть будь ласка.
Площадь полной поверхности параллелепипеда равна сумме площадей всех его граней. В прямоугольном параллелепипеде все грани - прямоугольники, причем противоположные грани равны. Найдем по Пифагору диагональ основания.
АС = √(AD² + DC²) = √(6² + 3²) = √45 см. Тогда высота параллелепипеда по Пифагору:
Пусть в треугольнике ABC с основанием AC проведена медиана AD. Медиана делит периметр треугольника на две части, одна из которых - AB+BD, а другая - AC+CD. Пусть AC=a, AB=BC=2b, BD=CD=b Тогда возможны 2 варианта: 2b+b=15, a+b=6 или 2b+b=6, a+b=15. Решив первую систему уравнений, получим b=5 и a=1, то есть длина основания 1, а длина боковой стороны 5*2=10. Решив вторую систему, получим b=2, a=13, то есть длина основания равна 13, а длина боковой стороны 4. Но этот вариант невозможен, так как в любом треугольнике длина одной стороны, меньше суммы длин двух других, то есть треугольника со сторонами 13, 4, 4 не существует. Значит, длина равна 10.
Уравнение прямой, равноудаленной от всех точек можно описать, взяв за начальную точку середину отрезка АВ и направив эту прямую под перпендикуляром к отрезку АВ:
Середина АВ M = (4-1/2; -5+2/2) = (3/2;-3/2)
Найдем вектор АВ = {-1-4;2+5} = {-5;7} Он направлен под углом tg(a) = -7/5 = k Воспользуемся формулой перпендикуляра к коэф. наклона k(перп) = - 1/k
Тогда k(перп) = 5/7
И уравнение прямой: y = kx + b
Найдем b: Так как прямая проходит через точку M (3/2 ; - 3/2) и k = 5/7, подставим в уравнение:
- 3/2 = 5/7*3/2 + b b = - 3/2 - 3/2*5/7 = -3/2*(5/7+1) = -3/2*12/7=-18/7
S полн = 72 см².
Объяснение:
Площадь полной поверхности параллелепипеда равна сумме площадей всех его граней. В прямоугольном параллелепипеде все грани - прямоугольники, причем противоположные грани равны. Найдем по Пифагору диагональ основания.
АС = √(AD² + DC²) = √(6² + 3²) = √45 см. Тогда высота параллелепипеда по Пифагору:
СС1 = √(AС1² + АC²) = √(49 + 45) = 2 см.
Sabcd = 6·3 = 18 см². Sdd1c1c = 3·2 = 6см². Saa1d1d = 6·2 = 12см².
тогда Sполн = 2·Sabcd + 2·Sdd1с1с +2·Saa1d1d или
Sполн = 2·18 + 2·6 +2·12 = 36 + 12 +24 = 72 см².