Значит так. Чертим прямоугольный треугольник. Решение: Рассмотрим треугольник ACH: Так как CH - высота,то этот треугольник прямоугольный. Следовательно CH - катет и мы находим его по теореме Пифагора: CH = √6^²-4^² = √36-16 = √20 = 2√5 Я предлагаю рассмотреть треугольник ABC и найти x через CB(не знаю можно ли так,как я решил,но я запишу) AB=4+x CB=√AB²-AC² = √(4-x)²-6² = √x²-10x-20 Разбираем квадратичное уравнение: x²-10x-20=0 D= 100+4*20=180 √D= 6√5 x_{12} = 5+-3√5 x2 - не подходит,так как получается отрицательным,поэтому BH = 5+3√5. ответ: 5+3√5
Если центр окружности соединить с вершинами данного треугольника, то он (данный треугольник) поделится на 3 новых треугольника. Теперь площадь исходного треугольника можно представить в виде суммы площадей 3х новых треугольников S= s1+ s2+ s3; Пусть стороны исходного треугольника равны x y и t, тогда x+ y+ t= 16; s1= x/2* h; s2= y/2* h; s3= t/2* h; у всех трёх треугольников h является радиусом (по свойству касательной к окружности). Если по условию x+ y+ t= 16, то x/2+ y/2+ t/2= 16/2= 8; S= s1+ s2+ s3= x/2* h+ y/2* h+ t/2*h= h(x/2+ y/2+ t/2)= 2*8= 16
если я не ошибаюсь то получается 106градусов
мне кажется у тебя тут не все данные