1 угол находим по теореме косинусов
cosa=(16+25-61)/40=-1/2,следовательно это угол в 120 градусов
тогда острый будет равен 180-120=60 градусам
В Д
Е
О
С А
СЕ-биссектрисса, СО-медиана, угол САВ-15град. В тр-ке АСВ угол В=180-90-15=75град. В тр-ке ВСЕ угол ВЕС=180-45-75=60град. Смежный с ним угол СЕА=180-60=120град.
Достроим треугольник АСВ до прямоугольника. СД и АВ - диагонали, в точке пересечения делятся пополам. СО=ОА. В равнобедренном треугольнике СОА угол А=углуС=15град, тогда угол СОА=180-15-15=150град. Смежный с ним угол СОЕ=30град.
В тр-ке СЕО угол ЕСО=180-120-30=30град.
Рисунок схема без соблюдения градусов углов
Обозначим вершины тр-ке А,В,С, Пусть С- прямой угол. Биссектриса СМ, а высота СК.
Дано: уг. МСК = 15°. ВС = 5см.
Найти: АВ
Поскольку СМ - биссектриса, то уг. МСВ = уг. АСМ = 0,5 уг.С = 90:2 = 45°
Уг. КСВ = уг. МСВ - уг.МСК = 45° - 15° = 30°
Высота СМ, опущенная из прямого угла С, делит тр-к АВС на два тр-ка АСК и СВК, подобных тр-ку АВС.
Рассмотрим подобные тр-ки АВС и СВК.
У них общий угол В, поэтому уг. А(в тр-ке АВС) = уг. ВСК (в тр-ке СВК) = 30°
Катет ВС, лежащий против угла А, равного 30°, равен 0,5 гипотенузы АВ
Гипотенуза АВ тогда:
АВ = 2 ВС = 2·5 = 10(см)
ответ: гипотенуза АВ треугольника АВС равна 10см.
Пусть АВСД - паралеллограмм. АВ=СД=4 см, ВС=АД=5 см. АС=корень(61), угол А и угол С - острые.
(противоложные стороны параллелограмма равны, противоположные углы параллелограмма равны)
Тогда по теоремме косинусов
cos (B)=cos (D)=(AB^2+BC^2-AC^2)/(2*AB*BC)
cos (B)=cos (D)=(4^2+5^2-(корень(61))^2)/(2*4*5)=-1/2
отсюда угол В=угол Д=120 градусов
угол А+угол В=180 градусов (сумма углов при одной стороне параллелограмма равна 180 градусов)
угол А=угол С=180-120=60 градусов
ответ: 60 градусов, 120 градусов, 60 градусов, 120 градусов