ответ:
объяснение:
1. вк=ав/2, значит вк= 1/2, а вк перпендикульярна ад, следовательно угол а = 30 гр. (т.к. если катет равен половине гипотинузы то угол лежащий против этого катета равен 30 гр.)
угол а=углу с, т.к. авсд - параллелограмм.
угол авк=60 гр., а
угол в = 60+90=150 гр. угол в= углу д
2.
авсд-трапеция
ад-?
из вершины с проводим перпендикуляр се
решение
ав=вс=10(за условием)
ав=се=10(по свойству)
∠е=90° ⇒ ∠д=∠с=45°⇒δсед-прямоугольный(∠е=90°)
се=ед=10 ⇒ δсед-равнобедренный
ад=ае+ед(при условии)
ад=10+10=20 см
ад=20 см
3.
дано: ромб abcd
угол а = 31°
решение:
в ромбе диагонали являются биссектрисами =>
=> 31/2=15.5 - угол оаd
диагонали пересекаются под прямым углом =>
=> угол аоd = 90°
сумма углов треугольника равна 180° =>
=> 180-90-15.5=74.5° - угол аdo
отв: 74.5°, 90°, 15.5°
4
на фото
ответ:
объяснение:
1. вк=ав/2, значит вк= 1/2, а вк перпендикульярна ад, следовательно угол а = 30 гр. (т.к. если катет равен половине гипотинузы то угол лежащий против этого катета равен 30 гр.)
угол а=углу с, т.к. авсд - параллелограмм.
угол авк=60 гр., а
угол в = 60+90=150 гр. угол в= углу д
2.
авсд-трапеция
ад-?
из вершины с проводим перпендикуляр се
решение
ав=вс=10(за условием)
ав=се=10(по свойству)
∠е=90° ⇒ ∠д=∠с=45°⇒δсед-прямоугольный(∠е=90°)
се=ед=10 ⇒ δсед-равнобедренный
ад=ае+ед(при условии)
ад=10+10=20 см
ад=20 см
3.
дано: ромб abcd
угол а = 31°
решение:
в ромбе диагонали являются биссектрисами =>
=> 31/2=15.5 - угол оаd
диагонали пересекаются под прямым углом =>
=> угол аоd = 90°
сумма углов треугольника равна 180° =>
=> 180-90-15.5=74.5° - угол аdo
отв: 74.5°, 90°, 15.5°
4
на фото
"Докажите, что если ДИАГОНАЛЬНЫЕ СЕЧЕНИЯ призмы пересекаются, то их общий отрезок параллелен и равен боковому ребру призмы.
Доказательство - из теорем о параллельности прямой и плоскости.
Боковые ребра призмы равны и параллельны, так как боковые грани призмы - параллелограммы по определению.
Соответствующие диагонали оснований также параллельны ("если две параллельные плоскости (основания призмы) пересекаются третьей (диагональное сечение), то прямые пересечения (диагонали оснований) параллельны".
Диагональные сечения призмы - параллелограммы, образованные соответствующими диагоналями оснований и боковыми ребрами призмы.
Итак, боковые ребра призмы равны и параллельны.
Следовательно, диагональное сечение призмы параллельно ребрам призмы, не лежащим в плоскости сечения, так как "если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна самой плоскости".
Но если плоскость (любое второе диагональное сечение) проходит через данную прямую (боковое ребро призмы), параллельную другой плоскости (первому диагональному сечению), и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой (боковому ребру)",а их общий отрезок - лежащий между двумя параллельными основаниями, равен ему, так как "отрезки параллельных прямых, заключённые между параллельными плоскостями, равны.
Что и требовалось доказать.