∠АОВ и ∠COD вертикальные,
∠ВОС и ∠AOD вертикальные.
Проведем:
ОЕ - биссектрису ∠АОВ,
OF - биссектрису ∠СOD,
OK - биссектрису ∠BOC,
OM - биссектрису ∠AOD.
Сначала докажем, что биссектрисы смежных углов перпендикулярны.
∠ВОА и ∠ВОС смежные, значит их сумма равна 180°:
∠1 + ∠2 + ∠3 + ∠4 = 180°
Биссектрисы разбили эти углы на пары равных углов:
∠1 = ∠2 и ∠3 = ∠4, значит
2 ·∠2 + 2 ·∠3 = 180°
2(∠2 + ∠3) = 180°
∠2 + ∠3 = 90°, значит
ОЕ⊥ОК.
∠СОВ и ∠COD смежные, значит и их биссектрисы пересекаются под прямым углом:
OF⊥OK.
Углы ЕОК и FOK имеют общую сторону ОК и составляют в сумме 180°, значит они смежные, следовательно стороны ОЕ и OF являются дополнительными лучами, т.е. лежат на одной прямой.
Что и требовалось доказать.
∠АОВ и ∠COD вертикальные,
∠ВОС и ∠AOD вертикальные.
Проведем:
ОЕ - биссектрису ∠АОВ,
OF - биссектрису ∠СOD,
OK - биссектрису ∠BOC,
OM - биссектрису ∠AOD.
Сначала докажем, что биссектрисы смежных углов перпендикулярны.
∠ВОА и ∠ВОС смежные, значит их сумма равна 180°:
∠1 + ∠2 + ∠3 + ∠4 = 180°
Биссектрисы разбили эти углы на пары равных углов:
∠1 = ∠2 и ∠3 = ∠4, значит
2 ·∠2 + 2 ·∠3 = 180°
2(∠2 + ∠3) = 180°
∠2 + ∠3 = 90°, значит
ОЕ⊥ОК.
∠СОВ и ∠COD смежные, значит и их биссектрисы пересекаются под прямым углом:
OF⊥OK.
Углы ЕОК и FOK имеют общую сторону ОК и составляют в сумме 180°, значит они смежные, следовательно стороны ОЕ и OF являются дополнительными лучами, т.е. лежат на одной прямой.
Что и требовалось доказать.
Треугольник А1ОА9 - равнобедренный с углом при вершине 120о , поэтому при радиусе окружности R его площадь равна
R^2 * sin 120o / 2 = R^2 * корень(3) / 4
В данном случае она составляет 2 * корень(3), поэтому
R^2 / 4 = 2 , откуда R = корень(8)
В треугольнике А1А6А7 сторона А1А7 - диаметр окружности, угол при вершине 15о (вписанный угол равен половине центрального, опирающегося на ту же дугу). Сторону А1А6 находим по теореме косинусов из равнобедренного треугольника, у которого боковая сторона - радиус, а угол при вершине 150о.
А1А6^2 = R^2 + R^2 - 2 * R * R * cos 150o = 2 * R^2 - 2 * R^2 * (-корень(3)/2) =
R^2 * (2 + корень(3)) = 8 * (2 + корень(3))
Итак, А1А6 = корень(8 * (2 + корень(3)))
А1А7 = 2 * корень(8)
sin 15o = корень ((1 - cos30o)/2) = корень ((1 - корень(3)/2)/2)=
корень(2-корень(3))/2
Таким образом, искомая площадь
S = A1А6 * А1А7 * sin 15o / 2 = корень(8 * (2 + корень (3))) * 2 * корень(8) * корень (2 - корень(3)) /2 /2 = 8 * 2 / 4 = 4