Радиус основания конуса равен 6 см, а образующая наклонена к
плоскости основания под углом 30°. Найдите:
а) площадь сечения конуса плоскостью, проходящей через две образующие, угол между которыми 60°;
Плоскость сечения ограничена по бокам двумя образующими.
Следовательно, это равнобедренный треугольник.
Угол между образующими= 60°.
Следовательно, сечение представляет из себя равносторонний треугольник, .Площадь равностороннего треугольника можно найти несколькими
а) по классической формуле
S=ah:2
б) по формуле Герона
в) по формуле площади для равностороннего треугольника,т.е. квадрата стороны, умноженной на синус угла между сторонами, деленному на два.
S=(a²√3):4 .
Найдем образующую, которая образует с плоскостью основания угол 30°
АМ=АО:соs (30°)
АМ=6:(√3÷2)=4√3 см
Sсеч=(4√3)²*√3):4=48√3):4=12√3 см²
б) площадь боковой поверхности конуса.
Боковая площадь поверхности круглого конуса равна произведению
половины окружности основания на образующую
S=0,5 C* l=π r l,
где С- длина окружности основания, l-образующая
Sбок=π 6*4√3=24√3 см²
Подробнее - на -
Это вообще просто, график рисовать не буду, мороки много, расстояние от осей:
p(c; ox): √4+9=√13;
p(c; oy): √16+9=5;
p(c; oz): √16+4=2√5;
Расстояние от плоскостей:
p(c; xoy): √9=3;
p(c; yoz): √16=4;
p(c; xoz): √4=2.