рассмотрим треугольники abc и a1b1c1, у которых ав = a1b1, ас = a1c1 ∠ а = ∠ а1 (см. рис.2). докажем, что δ abc = δ a1b1c1.
так как ∠ а = ∠ а1, то треугольник abc можно наложить на треугольник а1в1с1 так, что вершина а совместится с вершиной а1, а стороны ав и ас наложатся соответственно на лучи а1в1 и a1c1. поскольку ав = a1b1, ас = а1с1, то сторона ав совместится со стороной а1в1 а сторона ас — со стороной а1c1; в частности, совместятся точки в и в1, с и c1. следовательно, совместятся стороны вс и в1с1. итак, треугольники abc и а1в1с1 полностью совместятся, значит, они равны.
1.
Обозначим радиус меньшей окружности буквой r, а большей - R.
По условиям задачи r/R=2/7.
Ширина полосы будет равна R-r и по условиям равна 24 (см), значит: R-r=24 (см), то есть R=r+24 (см).
С учетом полученного результата имеем:
r/r+24=2/7,
7r=2*(r+24),
7r=2r+48,
5r=48,
r=9,6 (см).
Так как R=r+24, то R=9,6+24=33,6(см).
Таким образом диаметр одной окружности будет равен D=2R=33,6*2=67,2(cм), а диаметр второй окружности будет равен
d=2r=9,6*2=19,2 (см).
2.
Расстояние между центрами окружностей - отрезок ОА делится точкой ка в отношении 2:3. Значит, отрезок ОА разделен на 2+3=5 равных частей. Причем ОК содержит 2 части, а КА - 3 части.
10 см : 5 = 2 см - длина каждой из равны частей.
Тогда ОК=2*2 = 4 см. Диаметр меньшей окружности равен 2*4=8 см.
АК = 3*2 = 6 см. Диаметр большей окружности равен 2*6 = 12 см.
Наверное вот так ...