Допустим, что наша трапеция АВСD, где АВ и СD равные между собой стороны равнобедренной трапеции. ВС - это меньшее основание, а АD - это большее основание трапеции. Высота ВК делит АD на части, где АК=9 см, а КD=28 см. Выходит, что размер большего основания = АК+КD= 9+28 = 37 см. Поскольку известно, что высота равнобедренной трапеции, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, а другой — полуразности оснований. То используя это: АК=(АD-ВС)/2 9=(37-ВС)/2 37-ВС=9*2 37-ВС=18 ВС=37-18 ВС=19 см.
В трапецию можно вписать окружность, только если суииа боковых сторон равна сумме оснований. В нашем случае 8см+18см=26см. Значит боковая сторона нашей трапеции равна 13см. Высота трапеции равна диаметру вписанной окружности. Опустим перпендикуляр из верхнего угла на большее основание. Тогда имеем прямоугольный тр-к, образованный боковой стороной, высотой и отрезком большего основания, равным (18-8)/2 = 5. По Пифагору высота у нас равна: √(13²-5²) =√144= 12см. Итак, радиус вписанной окружности = 6.
Высота ВК делит АD на части, где АК=9 см, а КD=28 см.
Выходит, что размер большего основания = АК+КD= 9+28 = 37 см.
Поскольку известно, что высота равнобедренной трапеции, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, а другой — полуразности оснований. То используя это:
АК=(АD-ВС)/2
9=(37-ВС)/2
37-ВС=9*2
37-ВС=18
ВС=37-18
ВС=19 см.