Пусть катеты равны а и b, гипотенуза равна с и высота, проведённая из вершины прямого угла, равна h.
Высота прямоугольного треугольника, проведённая из вершина прямого угла к гипотенузе, равна произведению катетов, делённому на гипотенузу прямоугольного треугольника.Гипотенузу треугольника найдём по теореме Пифагора (сумма квадратов катетов равна квадрату гипотенузы) :
c² = a² + b² = 5² + 12² = 25 + 144 = 169
c = √c² = √169 = 13 см.
Тогда, по выше сказанному, h равно :
h = ab / c = 5 см*12 см / 13 см = 60 см²/13 см = 4 8/13 см.
4 8/13 см.
Проведем через прямую а плоскость.
Для этого опустим из точек А и В этой прямой перпендикуляры на плоскость α и соединим точки Н и О их пересечения с ней.
АН=ВО, т.к. все точки прямой, параллельной данной плоскости, находятся на одинаковом расстоянии от этой плоскости.
Прямая НО - линия пересечения плоскостей и параллельна а.
Если одна из двух прямых лежит в плоскости, а другая пересекает эту плоскость в точке, не принадлежащей первой прямой, то эти прямые скрещиваются.
Начертив в плоскости α любую прямую, пересекающую НО, получим скрещивающуюся с прямой а прямую, в данном случае прямую КМ, пересекающую плоскость, в которой лежит а, в точке е.