Если треугольники равнобедренные, значит боковая сторона равна основанию, а так как боковые стороны равны, значит все стороны равны. Тогда это квадрат. Значит углы по 90
Через прямую можно провести бесконечное множество плоскостей, это апиори. Если точка "а" не принадлежит прямой, то через нее и прямую можно провести только одну плоскость, так как прямая - это линия проведенная через 2 точки (не имеет значения в какой части прямой они находятся) а точка "а", по сути является третьей точкой опоры, а через 3 точки опоры можно провести только одну плоскость. Отсюда и вытекает, что поместив точку "а" на прямую, мы сможем провести через неё бесконечное множество плоскостей, так как она станет частью этой прямой и наоборот.
Пусть в прямоугольный треугольник ABC вписан квадрат CDEF (см. рисунок). Здесь AC=a, BC=b. Заметим, что диагональ CE квадрата является также биссектрисой исходного треугольника. Пусть CE=d, тогда CD=d√2/2 - сторона квадрата меньше диагонали в √2 раз. Периметр квадрата равен (d√2/2)*4=2√2d, а площадь равна (d√2/2)²=d²/2. Таким образом, чтобы найти периметр и площадь квадрата, достаточно выразить биссектрису прямого угла d через a и b.
Площадь прямоугольного треугольника равна половине произведения катетов, в нашем случае S=ab/2. Теперь воспользуемся другой формулой площади - S=1/2*a*b*sin(C), где a,b - соседние стороны треугольника, а sin(C) - угол между ними. Тогда S(ACE)=1/2*AC*CE*sin(45), S(BCE)=1/2*CE*BC*sin(45) (углы ACE и BCE равны 45 градусам). Так как S(ACE)+S(BCE)=S(ABC), мы можем записать уравнение с одним неизвестным CE: 1/2*AC*CE*sin(45)+1/2*CE*BC*sin(45)=ab/2 AC*CE*sin(45)+CE*BC*sin(45)=ab CE(AC+BC)=ab/sin(45) CE=ab/(a+b)sin(45) Таким образом, d=ab/(a+b)sin(45). Получаем, что периметр квадрата равен 2√2d=2√2ab/(a+b)sin(45)=4ab/(a+b), а площадь равна d²/2=(ab/(a+b)sin(45))²*1/2=a²b²/(a+b)².
Если треугольники равнобедренные, значит боковая сторона равна основанию, а так как боковые стороны равны, значит все стороны равны. Тогда это квадрат. Значит углы по 90