М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
MurMraz1
MurMraz1
19.03.2023 14:01 •  Геометрия

Даны точки а(0; 1; 2) в( корень из 2; 2; 1) с ( 0; 2; 1) найти площадь треугольника авс

👇
Ответ:
slava02555
slava02555
19.03.2023
Эта задача на теорему косинусов, но для того, чтобы начать решать через теорему, нужно знать стороны. А для этого нам даны координаты. Найдем коориданты векторов AB,BC,AC. Для этого вспомним правило: чтобы найти координаты вектора, нужно из координат конца вектора, вычесть координаты начала вектора.AB(1-0;-1-1; 2+1)=AB(1;-2;3)BC(3-1;1+1;0-2)=BC(2;2;-2)AC(3-0;1-1;0+1)=AC(3;0;1)Теперь найдем длину этих векторов.Теперь запишем теорему косинусов, используя косинус угла С.
4,6(97 оценок)
Открыть все ответы
Ответ:
Marina20012608
Marina20012608
19.03.2023
1. смежными называются  два угла, одна сторона которых общая, а две другие образуют прямую. сумма смежных углов равна 180 градусам. два смежных углы образуют  развернутый угол. если два угла равны, то смежные с ними углы тоже равны. угол, смежный с прямым углом, является  прямым. угол, смежный с острым углом,  тупой. угол, смежный с тупым углом, является  острым. любой луч, исходящий из вершины развернутого угла и проходит между сторонами разделяет его на два  смежные углы. если два угла равны, то смежные с ними углы также равны. два угла, смежные с одним и тем же углом, уровне. если два смежных углы равны, то они прямые.

вертикальными  называются два угла, стороны одного из которых являются дополнительными лучами до сторон другого угла.

вертикальные углы равны.

при пересечении двух прямых образуются две пары вертикальных углов и четыре пары смежных углов.

если известен один из углов, образовавшихся при пересечении двух прямых, то найти другие углы можно следующим образом: найти угол, смежный с данным, учитывая, что их сумма 180 градусов, после чего найти углы, вертикальные с известными, учитывая, что вертикальные углы уровне.

2.теорема 1 (первый признак равенства треугольников — по двум сторонам и углу между ними)

если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны. доказывается наложением одного из треугольников на другой. треугольники полностью совместятся, следовательно, по определению они равны.3.1 угол x, второй тогда будет 5x, а сумма смежных углов составляет 180° x + 5x = 180°

6x = 180°

x = 30°

первый угол - 30°, второй 5 раз больше, значит 5*30 = 150°

ответ: 30° и 150°

1.перпендикулярные прямые

прямая (отрезок прямой) обозначается двумя большими буквами латинского алфавита или одной маленькой буквой. точка обозначается только большой латинской буквой. прямые могут не пересекаться, пересекаться или совпадать. пересекающиеся прямые имеют только одну общую точку, непересекающиеся прямые — ни одной общей точки, у прямых все точки общие. определение. две прямые, пересекающиеся под прямым углом, называются перпендикулярными. перпендикулярность прямых (или их отрезков) обозначают знаком перпендикулярности «⊥». свойства перпендикулярных прямых:

1.меньший из углов, которые образуются при пересечении двух прямых на плоскости, называется углом между прямыми.

2.две прямые называются перпендикулярными, если они пересекаются под прямым углом.

3.через точку, не принадлежащую прямой, можно провести прямую, перпендикулярную данной прямой, и только одну.

4.отрезки или лучи, которые лежат на перпендикулярных прямых, называются перпендикулярными.

5.перпендикуляром к данной прямой называется отрезок прямой, перпендикулярный данной, который имеет одним из своих концов точку пересечения прямой и отрезка. при этом конец отрезка, лежащий на прямой, называется основанием перпендикуляра.

6.через каждую точку прямой можно провести перпендикулярную ей прямую и только одну.

7.с любой точки, не лежащей на данной прямой, можно опустить на эту прямую перпендикуляр и только один.

8.длина перпендикуляра, опущенного из точки на прямую, называется расстоянием от точки до прямой.

9.расстояние от любой точки одной из параллельных прямых до второй прямой называется расстоянием между параллельными прямыми.

2.теорема 3 (третий признак равенства треугольников — по трем сторонам)

если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.

запишите сокращенно условие и заключение теоремы.

доказательство:

для доказательства приложим треугольники большими сторонами. треугольник a1b1c1    займет положение ab2c  . треугольник bab2    и треугольникbcb2    — равнобедренные. из равенства углов при основании получаем, что b=b2  . используем первый признак равенства треугольников.

3.пусть основание будет х, тогда боковые стороны х-5 ,можем составить уравнение:

х-5+х-5+х=35

3х=45

х=15, т.к. боковые стороны равны х-5, то вместо х подставляем получившееся число будет 15-5=10

следовательно стороны равны 10 см.

ответ: 10 см.

4,4(58 оценок)
Ответ:
Roma765432112
Roma765432112
19.03.2023

Площадь основания конуса равна 27·π см².

Объяснение:

Сечение - равнобедренный прямоугольный треугольник с катетами - образующими конуса, не является осевым, так как образующая конуса наклонена к плоскости основания конуса под углом 30° (дано). =>

S = (1/2)·L² = 18 см² (дано)  =>

L = 6 см.

В прямоугольном треугольнике, образованном высотой, радиусом (катеты) и гипотенузой (образующая), против угла 30° лежит катет (высота), равный половине гипотенузы (образующая конуса) =>

h = 3 cм.

По Пифагору R² = L² h² = 36 - 9 = 27 см². =>

R = 3√3 см. Тогда

S = π·R² = 27π.


Сечение, проходящее через вершину конуса, представляет собой прямоугольный треугольник площадью 18 с
4,6(73 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ