ед².
Обозначим данную пирамиду буквами .
ед.
Проведём высоту . Точка
- центр
- точка пересечения, медиан, высот и биссектрис треугольника.
Проведём апофему (апофема - это высота боковой грани пирамиды, проведённая из вершины пирамиды) к стороне
основания пирамиды.
Т.к. данная пирамида - правильная, треугольная ⇒ основание пирамиды - правильный треугольник.
.
Проведём высоту в
.
Т.к. - равносторонний ⇒
- высота, медиана, биссектриса.
Высота и апофема
имеют общее основание, а именно точку
, т.к.
- медиана, а апофема
делит
пополам (по свойству).
.
Рассмотрим :
- прямоугольный, так как
- высота.
Найдём высоту по теореме Пифагора:
ед.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Точка O - пересечение медиан и делит их в отношении 2 : 1, считая от вершины.
ед.
ед.
Рассмотрим :
- прямоугольный, так как
- высота.
Если угол прямоугольного треугольника равен , то напротив лежащий катет равен произведению меньшего катета на
.
ед.
Найдём апофему по теореме Пифагора:
ед.
====================================================
полн. поверх. = S основ. + S бок.поверх.
осн. =
ед².
бок. поверх. =
(
осн.
), где
- апофема.
осн.
ед.
⇒ бок. поверх. =
ед².
⇒ полн. поверх. =
ед².
Объяснение:
центральный угол равен внутреннему равен 90 градусов для квадрата
центральный угол равен 120 градусов и больше чем внутренний угол равностороннего треугольника равного 60 градусов
вроде определились что это треугольник но надо доказать что это именно то что нам нужно
центральный угол правильного n - угольника равен 360/n
внутренний угол правильного n - угольника равен 180*(n-2)/n
по условию 360/n = 2 * 180*(n-2)/n
отсюда следует n-2 = 1
n = 3 - значит это треугольник
периметр искомого треугольника равен 3*2 см = 6 см
54=14*2+2b
2b=54-28=26
b=13
S=a*b
S=14*13=182