Аксiома ІІІ. 1. Кожний відрізок має певну довжину, більшу від нуля. 2. Довжина відрізка дорівнює сумі довжин частин, на які він розбивається будь-якою його точкою.
В основании правильной пирамиды лежит правильный многоугольник, а его вершина проецируется в центр основания. Значит в основании пирамиды Хеопса лежит квадрат. Площадь квадрата равна его стороне в квадрате, а гектар =10000м². Итак, сторона квадрата равна 100*√5,3 м. Соответственно, половина стороны равна 50√5,3м. Угол наклона бокового ребра к основанию - это угол в прямоугольном треугольнике с катетами: высота и половина стороны основания, а гипотенуза - апофема грани. Зная два катета - знаем тангенс угла наклона: tgα=h/(a/2) или 147/(50√5,3) = 1,28. Значит угол равен 52 градуса. ответ: угол наклона боковой грани к плоскости основания пирамиды Хеопса равен 52°
Плоскость можно задать одним из - Три любые точки - Прямая и точка, не лежащая на ней - Две параллельные прямые - Две пересекающиеся прямые
Если даны 4 точки, то через три из них пройдет одна единственная плоскость, однако про четвертую точку ничего однозначно сказать нельзя - она может как лежать в этой плоскости, так и не лежать в ней.
Два примера на картинке: в обоих случаях через три красные точки проведена плоскость, но в первом четвертая зеленая точка не принадлежит этой плоскости, а во втором - принадлежит.
Допустим, даны точки А, В, С, D. Проведем прямые АВ и CD. Если полученные прямые параллельны или пересекающиеся, то (смотрим задания плоскости) через все четыре точки можно провести одну плоскость. Но если прямые АВ и CD будут скрещивающимися, то такую плоскость провести будет невозможно, провести можно будет только плоскость, проходящую через некоторые три точки из этих четырех.
1. Кожний відрізок має певну довжину, більшу від нуля.
2. Довжина відрізка дорівнює сумі довжин частин, на які він розбивається будь-якою його точкою.