Пусть есть треугольник с катетами AB и BC.
Если радиус описанной окружности равен 6,5, то гипотенуза равна 2*6,5 = 13.
Отрезки катетов до точки касания вписанной окружности равны 2 и -2.
По свойству касательных гипотенуза равна сумме этих отрезков:
AB - 2 + BC - 2 = 13 или AB + BC=17.
За теоремой Пифагора 13² = AB² + BC².
Возведём в квадрат равенство AB + BC = 17:
AB² + 2AB*BC + BC² = 289. Заменим AB² +BC² = 169.
2AB*BC = 289 - 169 = 120, AB*BC = 120/2 = 60.
Из выражения AB+ BC = 17 выразим BC = 17 - AB и подставим в AB*BC = 60.
Получим: AB(17 -AB) = 60 или 17*AB -AB² = 60.
Получили квадратное уравнение AB² - 17AB + 60 = 0.
Квадратное уравнение, решаем относительно AB.
Ищем дискриминант:
D=(-17)^2-4*1*60=289-4*60=289-240=49;
AB1=(√49-(-17))/(2*1)=(7-(-17))/2=(7+17)/2=24/2=12;
AB2=(-√49-(-17))/(2*1)=(-7-(-17))/2=(-7+17)/2=10/2=5.
ответ: катеты равны 5 и 12.
кратное 18 ---> оно делится на 2 и на 9
т.е. оно четное --- заканчивается на 0 или 2 или 4 или 6 или 8
и сумма цифр числа делится на 9 (это признак делимости на 9)))
получим варианты:
a b с d 0
a b с d 2
a b с d 4
a b с d 6
a b с d 8
и теперь второе условие: соседние цифры отличаются на 2
для первого варианта: a b с 2 0, a b 0 2 0 или a b 4 2 0
a+b+2 = 9 или a+b+4+2 = 9
a+b = 7 a+b = 3 ---> 12420, например
18 * 690 = 12420
но, первые цифры не на 2 отличаются... не получилось...
но смысл рассуждений такой же)))
пробуем еще...
у меня получилось:
24246 / 18 = 1347
можно попробовать и еще найти...