Воснование призмы-прямоугольный треугольник с острым углом 30° и меньшим катетом 9см. диогональ большей боковой грани равна 18√2 см. наити площадь боковой поверхности призмы? решите . заранее !
Призма, я так понимаю, прямая. Большая боковая грань - прямоугольник со стороной равной гипотенузе с треугольника основания (см.рис.). Меньший катет лежит против угла в 30° (против меньшего угла в треугольнике) => c=2•9=18 (см).Больший катет b=c•cos(30°)=18•√3/2=9√3 (см). Ребро (высота) призмы по Пифагору h=√[(18√2)²-c²]=√(18²•2-18²)=18 (см).Тогда площадь боковой поверхности призмы S будет равна сумме площадей трех прямоугольников:S=a•h+b•h+c•h=9•18 + 9√3 • 18 + 18•18=162•(3+√3)=162√3(√3+1) см².
Т к DK:KB=CN:NB=1:4, NK || CD и треугольники КВN и DBC подобны, BN=4CN, BC=BN+CN=5CN, k=BN:BC=4/5 - коэффициент подобия, KN=4/5*30=24. Т к DM:MA=CL:LA=1:4, ML || CD и треугольники MAL и DAC подобны, AM=4DM, AD=AM+DM=5DM, k=AM:AD=4/5 - коэффициент подобия, ML=4/5*30=24. Т к NK || CD и ML || CD, то NK || ML, кроме того NK = ML, значит KMKN - параллелограмм по признаку. Тогда MK=LN. Т к. DK:KB=DM:MA=1:4, MK || AB и треугольники КDM и ADB подобны, AM=4DM, AD=AM+MD=5DM, k=DM:DA=1/5 - коэффициент подобия, MK=1/5*25=5. LN=MK=5. Периметр KMLN: P=2*(24+5)=58.
Т к DK:KB=CN:NB=1:4, NK || CD и треугольники КВN и DBC подобны, BN=4CN, BC=BN+CN=5CN, k=BN:BC=4/5 - коэффициент подобия, KN=4/5*30=24. Т к DM:MA=CL:LA=1:4, ML || CD и треугольники MAL и DAC подобны, AM=4DM, AD=AM+DM=5DM, k=AM:AD=4/5 - коэффициент подобия, ML=4/5*30=24. Т к NK || CD и ML || CD, то NK || ML, кроме того NK = ML, значит KMKN - параллелограмм по признаку. Тогда MK=LN. Т к. DK:KB=DM:MA=1:4, MK || AB и треугольники КDM и ADB подобны, AM=4DM, AD=AM+MD=5DM, k=DM:DA=1/5 - коэффициент подобия, MK=1/5*25=5. LN=MK=5. Периметр KMLN: P=2*(24+5)=58.