Меньшее основание прямоугольной трапеции равна 2 см, а острый угол 30 градусов. найдите площадь трапеции, если меньшая диагональ образует с основанием угол 60 градусов
Значит так. Чертим прямоугольный треугольник. Решение: Рассмотрим треугольник ACH: Так как CH - высота,то этот треугольник прямоугольный. Следовательно CH - катет и мы находим его по теореме Пифагора: CH = √6^²-4^² = √36-16 = √20 = 2√5 Я предлагаю рассмотреть треугольник ABC и найти x через CB(не знаю можно ли так,как я решил,но я запишу) AB=4+x CB=√AB²-AC² = √(4-x)²-6² = √x²-10x-20 Разбираем квадратичное уравнение: x²-10x-20=0 D= 100+4*20=180 √D= 6√5 x_{12} = 5+-3√5 x2 - не подходит,так как получается отрицательным,поэтому BH = 5+3√5. ответ: 5+3√5
∠DAB = 90°, ∠CBA = 30°, ∠CAB = 60°, ⇒∠ACB = 90°, В ΔACH: ∠CAH = 60°, ∠AHC = 90° ⇒ ∠ACH = 30° (CD = AH = aсм, так как ADCH - прямоугольник), тогда AC = 2aсм - катет против угла в 30°; В ΔACB: ∠CAB = 60°, ∠ABC = 30°, ∠ACB = 90° ⇒AB = 4a(см) - катет против угла в 30°; CH = √AC²-AH² = √4a²-a² = a√3см ⇒ S =( (AB + CD) ·CH) : 2 = ((a + 4a) · a√3) :2 =2,5a²√3 см²