Тетраэдр называется правильным, если все его грани - равносторонние треугольники. Вершина нашего тетраэдра проецируется в центр его основания, значит тангенс угла наклона бокового ребра правильного тетраэдра к плоскости его основания равен отношению высоты тетраэдра к 2/3 высоты основания (так как в правильном треугольнике - основании высота является и медианой, то расстояние от вершины до центра основания равно 2/3 высоты основания). Высота основания h=(√3/2)*a, где а - сторона треугольника (ребро нашего тетраэдра). Расстояние от вершины тетраэдра до центра основания равно (2/3)*h=(√3/3)*a. Высота тетраэдра равна по Пифагору H=√(a²-(3/9)*a²)=(√6/3)*a. Тогда тангенс угла наклона бокового ребра правильного тетраэдра к плоскости его основания равен Tgα=H/h=(√6/3)*a/(√3/3)*a=√6/√3=√2. ответ: Tgα=√2.
а) Векторы ВВ1 и В1С совпадают с катетом и гипотенузой прямоугольного треугольника BВ1С, следовательно, ВВ1С=45°.б) BD = B1D1 , т.к. они сонаправлены и имеют одинаковую длину. BD = B1D1 =- DB .Угол между DB и DA — угол между стороной и диагональю квадрата, т.е. α=45°. Тогда угол междуDA и B1D1 равен 135°.в) A1C1 и A1B совпадают со сторонами равностороннего треугольника АВС и отложены из одной точки. Следовательно, угол 60°.г)(угол между стороной и диагональюквадрата).д)е)Пусть О — точка пересечения диагоналей В1С и ВС1,квадрата ВВ1С1С.следовательно,ж)следовательно,з)следовательно, угол между ними равен 180°Не знаете как решить? Можете с решением? Заходите и спрашивайте.