Теорема косинусов для треугольника AМC
AC^2=AM^2+MC^2-2*AM*CM*cosAMC
Теорема косинусов для треугольника BМC
BC^2=BM^2+MC^2-2*BM*CM*cosBMC
AC=BC (треугольник равносторонний) Тогда AC^2=BC^2
AM^2+MC^2-2*AM*CM*cosAMC=BM^2+MC^2-2*BM*CM*cosBMC
AM^2-2*AM*CM*cosAMC=BM^2-2*BM*CM*cosBMC
АМ и ВM знаем
22^2-2*22*CM*cosAMC=10^2-2*1010*CM*cosBMC
484-44*CM*cosAMC=100-20*CM*cosBMC
Углы ВМС и ВАС равны, опираются на одну дугу. ВАС=60 - равносторонний треугольник.
Угол АМС=АМВ+ВМС=АСВ+ВАС=60+60=120
484-44*CM*cos120=100-20*CM*cos60
484-44*CM*(-1/2)=100-20*CM*1/2
484+22*CM=100-10*CM
32*CM=-384
СМ=нет (отрицательное)
1) M1(1;0;2) так как на плоскость Охz, то здесь отсутствует координата у, т.е. она равна 0
M2(0;0;2) здесь до оси Оz, отсутствуют координаты х и у, т.е. они равны 0
2) вычислим координаты вектора EF{1-(-1); -1-2; 4-3}
EF{2;-3;1} EF=2i-3j+k