Отношение сторон треугольника АВD- 12:16:20=3:4:5. Это отношение сторон "египетского" треугольника, значит, ∆ АВD- прямоугольный. (Можно проверить по т.Пифагора)
∆ ВСЕ - прямоугольный по построению, т.к. СЕ⊥BD.
ВС||AD, ⇒ ∠СВD=∠BDA как накрестлежащие. Если острый угол одного прямоугольного треугольника равен острому углу другого, они подобны.
∆ BEC ~ ∆ ABD.
Тогда ∠ВСЕ=∠ВАD, и их тригонометрические функции равны.
sin ВСЕ=sin A=BD/AD=16/20=0,8
cos ВСЕ=cos A=AB/AD=12/20=0,6
tg BCE=tg A=BD/AB=16/12=4/3
∠АСR = ∠ACD + ∠RCD = ∠ABC + ∠BCR = ∠ARC ⇒ ΔACR - равнобедренный, AN⊥CR, CN = NR, АС = AR = 6
∠ВСК = ∠BCD + ∠KCD = ∠BAC + ACK = ∠BKC ⇒ ΔBCK - равнобедренный, BM⊥CK, CM = MK, BC = BK = 8
CM = MK , CN = NR ⇒ MN - средняя линия ΔKCR
В ΔАВС: АВ² = АС² + BC² = 6² + 8² = 100 ⇒ AB = 10
BR = AB - AR = 10 - 6 = 4 , KR = BK - BR = 8 - 4 = 4 ⇒ MN = KR/2 = 4/2 = 2
===========================================================
Пусть АС = a, BC = b, AB = c, тогда АС = AR = a, BC = BK = b
BR = AB - AR = c - a, KR = BK - BR = b - (c - a) = a + b - c ⇒ MN = (a + b - c)/2
Следует, что MN не просто отрезок, лежащий на средней линии ΔАВС, и что удивительно! но и равен радиусу вписанной окружности в ΔАВС
MN = r = (a + b - c)/2 = (6 + 8 - 10)/2 = 2
ответ: 2
Построим биссектрисы ВЕ и В1Е1. Рассмотрим треугольники АВЕ и А1В1Е1. Они также подобны, например, по стороне и двум прилежащим к ней углам:
- т.к. угол В равен углу В1, а ВЕ и В1Е1 - биссектрисы, то угол АВЕ будет равен углу А1В1Е1;
- углы А и А1 равны как соответственные у подобных треугольников АВС и А1В1С1;
- сторона АВ подобна стороне А1В1 по условию, и мы можем написать соотношение этих сторон как
АВ:А1В1=k, где k - коэффициент подобия.
Такое же соотношение сходственных сторон с тем же коэффициентом будет справедливо и для ВЕ и В1Е1 в треугольниках АВЕ и А1В1Е1:
ВЕ:В1Е1=k. Что и требовалось доказать.