Так как по условию задачи осевым сечением конуса является прямоугольный треугольник, то, соответственно, угол при вершине данного треугольника равен 90° Значит гипотенуза является основанием треугольника и диаметром основания конуса:
D = 10 см по условию задачи.
Проведем в треугольнике высоту, перпендикулярную основанию конуса. Высота разбивает треугольник на два одинаковых прямоугольных треугольника. Если угол при вершине равен 90°, то углы в основании треугольника будут по 45° Значит высота треугольника H равна радиусу основания: Н = R = D/2 = 10/2 = 5 см
Найдем объём конуса:
V = 1/3 πR²H = 1/3 π5²*5 = 125 π/3 см³
ответ: 125 π/3 см³
Так как по условию задачи осевым сечением конуса является прямоугольный треугольник, то, соответственно, угол при вершине данного треугольника равен 90° Значит гипотенуза является основанием треугольника и диаметром основания конуса:
D = 10 см по условию задачи.
Проведем в треугольнике высоту, перпендикулярную основанию конуса. Высота разбивает треугольник на два одинаковых прямоугольных треугольника. Если угол при вершине равен 90°, то углы в основании треугольника будут по 45° Значит высота треугольника H равна радиусу основания: Н = R = D/2 = 10/2 = 5 см
Найдем объём конуса:
V = 1/3 πR²H = 1/3 π5²*5 = 125 π/3 см³
ответ: 125 π/3 см³
соответственно вся медиана СС1 (из угла С) = 6
проведем луч СО за точку О и отметим на нем точку D, так что ОD=CO
получим четыреугольник АВСD, в котором диагонали пересекаются и делятся точкой пересечения пополам, и один угол в нем прямой. Значит АВСD - прямоугольник, в прямоугольнике диагонали равны. ВС=СD=2*CO=2*6=12