М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
alyena2802
alyena2802
03.09.2021 17:25 •  Геометрия

вас! дан четырёхугольник mnpk. a-середина стороны mn, b- середина стороны np. точка e принадлежит pk. точка f принадлежит km. известно отношение: ке относится к ер как 1: 2. kf относится к fm как 1: 2. док-ть, что четырехугольник abef-трапеция. +рисунок составить самому. я не могу справиться без рисунка, да и с ним я бы тоже эту не поняла. великие знатоки , , !

👇
Ответ:
Sorokinsonay
Sorokinsonay
03.09.2021
1. Построим отрезки АВ и МР. Рассмотрим получившийся треуг-ик MNP. По условию точки А и В - середины сторон MN и NP. Значит, АВ - средняя линия треугольника MNP, следовательно, она параллельна его основанию РМ:
AB II РМ.
2. Проведем отрезок EF. Рассмотрим треугольники EKF и РКМ. Они подобны по второму признаку подобия треуг-ов: две стороны одного треуг-ка пропорциональны двум сторонам другого треуг-ка и углы, заключенные между этими сторонами, равны. В нашем случае:
- КЕ : КР = 1 : 3 (откуда взялось 3: КР=КЕ+ЕР=1 часть + 2 части=3 части);
- KF : KM = 1 : 3 (точно также КМ=KF+FM=1 часть+2 части=3 части);
- угол К, заключенный между пропорциональными сторонами, - общий.
У подобных треугольников соответственные углы равны: <EFK=<PMK
3. Рассмотрим эти углы. Это соответственные углы при пересечении двух прямых EF и PM секущей КМ. Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны. Т.е.
EF II PM.
4. Выше мы вывели, что РМ II AB, значит EF II АВ. 
Итак, мы доказали, что две стороны четырехугольника ABEF параллельны.
5. Построим отрезок NK. Рассмотрим треугольники NMK и NPK. Здесь ни AF, ни BE не будут являться средними линиями этих треугольников, поскольку точка F не является серединой стороны КМ, так же, как и точка Е - не середина стороны РК. Значит, они непараллельны основанию KN, которое является общим для обоих треугольников. Они непараллельны и между собой. 
В итоге мы получаем, что четырехугольник ABEF имеет две параллельные стороны и две непараллельные стороны. Значит это - трапеция. 
вас! дан четырёхугольник mnpk. a-середина стороны mn, b- середина стороны np. точка e принадлежит pk
4,8(43 оценок)
Открыть все ответы
Ответ:
DLM1
DLM1
03.09.2021
Так как треугольник равносторонний, то все его углы раны 60°
высота проведённая в таком треугольнике делит его на два равных прямоугольника с углами равными 90°, 60°, 30° 
в прямоугольных треугольниках сторона, лежащая против угла в 30°, равна половине гипотенузы (В данном случае гипотенуза это сторона изначального треугольника, возьмём её за 2x)
По теореме Пифагора: 4x^{2}= x^{2} +8^{2}
                                        3 x^{2} =64
                                        x^{2} = \frac{64}{3}
                                        x= \frac{8}{\sqrt{3}}
сторона треугольника равна 2*\frac{8}{\sqrt{3}}=\frac{16}{\sqrt{3}}
Площадь = \frac{\frac{16}{\sqrt{3}}*8}{2} =\frac{16}{\sqrt{3}}*4=\frac{64}{\sqrt{3}}=\frac{64\sqrt3}{3}см²
ответ:\frac{64\sqrt3}{3}см²
4,7(21 оценок)
Ответ:
argen08
argen08
03.09.2021
ABCD- трапеция
w(O;R) - описана около Δ ABC
A и C- точки касания
AD=5
BC=2
R- ?

Воспользуемся теоремой о свойстве касательной:
Касательная к окружности перпендикулярна радиусу этой окружности,проведенному в точку касания.
OC ⊥ CD
AO ⊥ AD
Δ OAD и Δ OCD- прямоугольные
OC=OA ( как радиусы)
OD- общая
Δ OCD= Δ OAD (по гипотенузе и острому углу)
Значит CD=AD=5
Пусть \ \textless \ CDA= \alpha,  тогда \ \textless \ AOC=180к- \alpha
Из Δ AOC:
AO=OC=R
по теореме косинусов:
AC^2=AO^2+OC^2-2*AO*OC*cos\ \textless \ AOC
AC^2=R^2+R^2-2*R*R*cos(180к- \alpha )
AC^2=R^2+R^2-2R^2*cos(180к- \alpha )
AC^2=2R^2+2R^2*cos \alpha
с другой стороны из Δ ACD:
AC^2=CD^2+AD^2-2*CD*AD*cos \ \textless \ ADC
AC^2=5^2+5^2-2*5*5*cos \alpha
AC^2=25+25-50*cos \alpha
AC^2=50-50*cos\alpha

2R^2+2R^2*cos \alpha=50-50*cos \alpha
2R^2(1+cos \alpha )=50(1-cos \alpha )
R^2(1+cos \alpha )=25(1-cos \alpha )
R^2=\frac{25*(1-cos \alpha) }{1+cos \alpha}
R= \sqrt{\frac{25*(1-cos \alpha) }{1+cos \alpha} }  (1)

BC ║ AD
AO ⊥ AD
AO ∩ BC=M ⇒ OM ⊥ BC
Из C опустим перпендикуляр на сторону AD, т.е.
CF ⊥ AD
AMCF- прямоугольник
AF=MC=1
Δ BOC- равнобедренный, значит BM=MC=1
AD=AF+FD
FD=AD-AF=5-1=4
Δ CFD- прямоугольный
cos\ \textless \ CDF= \frac{FD}{CD}
cos \alpha = \frac{4}{5}
 подставим в (1) и получим ответ:
R= \sqrt{\frac{25*(1- \frac{4}{5} ) }{1+ \frac{4}{5} }}=5* \sqrt{ \frac{1}{5} * \frac{5}{9} }=5* \frac{1}{3} = \frac{5}{3}

ответ: \frac{5}{3}

рисунок  в приложении

Втрапеции abcd основания ad и bc равны соответственно 5 и 2. окружность, описанная около треугольник
4,5(84 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ