Пусть дан АВСД - прямоугольник,
О - точка пересечения диагоналей АС и ВД
уг АОВ : уг ВОС = 2:7
Найти: уг ВАО и уг САД -?
1) 2+7=9 частей в смежных углах АОВ и ВОС, ⇒ 180:9=20* в одной части, ⇒ уг АОВ=40*, уг ВОС=140* (по свойству смежных углов)
2) тр АОВ - р/б, т.к. ВО=АО по свойству прямоугольника (диагонали прямоуг равны и точкой пересечения делятся пополам), ⇒ уг АВО = уг ВАО ( по св-ву углов в р/б тр) уг АВО = уг ВАО = (180-40):2=70*
3) уг ВАД = 90*, так АВСД - прямоугольник по условию, ⇒уг САД (он же ОАД) = 90-уг ВАО = 90-70 = 20*
ответ: 70* и 20*
Тогда, 1/9=BC/AB
9BC=AB
(Подставляем вместо АВ 27(по условию))
BC=27/9=3
2)sinB=AC/AB
Тогда, 1/3=AC/AB
3AC=AB
(Подставляем вместо АВ 12(по условию))
AC=12/3=4
3)tgB=AC/BC
1/6=AC/BC
6AC=BC
BC=12*6=72