Разность двух углов, образовавшихся при пересечении двух прямых, равна 54°. найдите каждый из углов. сумма двух углов, образовавшихся при пересечении двух прямых, равна 210°. найдите каждый из образовавшихся углов.зарание
Углы АОД=ВОС и АОВ=СОД как вертикальные,а их сумма 360. Пусть АОД=ВОС=х, тогда АОВ=СОД=х+ 54. Составим и решим ур-е. 2×(х+х+54)=360. 4х=252 х=63. Значит АОД=ВОС=63, тогда АОВ=СОД=63+54=117. ответ: 63; 117.
Построение отрезка, равного данному. дан - отрезок ab. требуется - построить равный ему отрезок (такой же длины). для этого - построим произвольный луч с началом в новой точке c. циркулем замерим данный отрезок ab. теперь тем же самым раствором циркуля на построенном луче от его начала - c - отложим отрезок, равный данному. для этого иглой циркуля упираем в начало луча c, а пишущей ножкой проводим дугу до пересечения с лучом. точку пересечения назовём d. отрезок cd равен отрезку ab. построение закончено. источник:
Дано: δ авс∠с = 90°ак - биссектр.ак = 18 смкм = 9 смнайти: ∠акврешение. т.к. расстояние от точки измеряется по перпендикуляру, то опустим его из (·) к на гипотенузу ав и обозначим это расстояние км. рассмотрим полученный δ акм, т.к. ∠амк = 90°,то ак гипотенуза, а км - катет. поскольку, исходя из условия, катет км = 9/18 = 1/2 ак, то ∠кам = 30°. т.к. по условию ак - биссектриса, то ∠сак =∠кам = 30° рассмотрим δакс. по условию ∠аск = 90°; а∠сак = 30°, значит, ∠акс = 180° - 90° - 30° = 60° искомый ∠акв - смежный с ∠акс, значит, ∠акв = 180° - ∠акс = 180° - 60° = 120° ответ: 120°
Пусть АОД=ВОС=х, тогда АОВ=СОД=х+ 54.
Составим и решим ур-е.
2×(х+х+54)=360.
4х=252
х=63.
Значит АОД=ВОС=63, тогда АОВ=СОД=63+54=117.
ответ: 63; 117.