№1 основание прямой призмы - прямоугольный треугольник с гипотенузой 20 см и катетом 16 см . найдите полощадь боковой поверхности призмы, если ее наименьшая боковая грань - квадрат
АВСД - трапеция, АД-ВС=14 см, Р=86 см, ∠АВД=∠СВД, АВ=СД. В трапеции биссектриса отсекает от противоположного основания отрезок, равный боковой стороне, прилежащей к биссектрисе (свойство трапеции, да и параллелограмма тоже). В нашем случае биссектриса - это диагональ, значит АВ=АД. АВ=АД=СД, ВС=АД-14 ⇒ Р=4·АД-14, 86=4АД-14, АД=25 см. ВМ - высота на сторону АД. В равнобедренной трапеции АМ=(АД-ВС)/2=14/2=7 см. В тр-ке АВМ ВМ=√(АВ²-АМ²)=√(25²-7²)=24 см. ВС=АД-14=25-14=11 см. Площадь трапеции: S=(АВ+ВС)·ВМ/2=(25+11)·24/2=432 см² - это ответ.
Проведем высоту из 2ого угла при основании... высоты будут пересекаться под углом в 90 по теореме: точка пересечения высот делит их в отношении 2:1 получаем равноб треугольник с основание и сторонами в 4 см дальше находим основание по теореме пифагора, оно равно 2корня из 2 площадь маленького треугольника= 8 см высота из вершины маленького треуг= 4 корня из 2 вспоминая вышепреведенную теорему получаем, что высота из вершины большого теругольника = 12корней из 2 площадь= 2корня из 2 * 4 корня из 2= 48 см^2
найдем второй катет в прямоугольном треугольнике основания
b =√(c^2-a^2)=√(20^2-16^2)=12 см
катет b=12 см -меньший, на нем стоит наименьшая боковая грань - квадрат
значит высота h=b= 12 см
периметр P=a+b+c
Sбок=P*h=(a+b+c)*h=(16+12+20)*12=576 см2
ответ 576 см2