Объяснение:
1) Боковая сторона равнобедренного треугольника лежит напротив угла при основании равнобедренного треугольника.
ВСЕГДА
Действительно боковые стороны равнобедренного треугольника лежат напротив углов при его основании.
2) Равносторонний треугольник является прямоугольным.
НИКОГДА
В равносторонней треугольнике углы равны. Так как сумма углов треугольника равна 180°, ⇒ углы равностороннего треугольника равны 60°.
3) Равнобедренный треугольник является равносторонним.
ИНОГДА
В равнобедренном треугольнике по определению две стороны равны. Их называют боковыми. Третью сторону называют основанием. Если основание будет равно боковой стороне, то треугольник будет равносторонним.
4) Равносторонний треугольник является равнобедренным.
ВСЕГДА
В равностороннем треугольнике равны три стороны. Для равнобедренного треугольника достаточно равенства двух сторон. Значит равносторонний треугольник является равнобедренным.
5) Треугольник является тупоугольным, если у него есть тупой угол.
ВСЕГДА
Действительно, в любом треугольнике два угла острые. Третий может быть или острым, либо прямым, либо тупым. В соответствии с этим треугольники делятся на остроугольные, прямоугольные и тупоугольные соответственно.
Равенство треугольников:
1. по общей стороне AD и двум равным углам: B = C, CAD = DAB
2. по общей стороне (высоте исходного треугольника) и двум углам при высоте и A = С.
3. по общей стороне AD и равным сторонам AC и BD и прямому углу.
4. используем теорему синусов: "Стороны треугольника пропорциональны синусам противолежащих углов".
4/sin30 = AB/sin90 => AB = 8
5. Находим A = 180 - 90 - 60 =30
используем теорему синусов:
10/sin90 = BC/sin 30 => BC = 5
6. Треугольник равнобедренный, т.к углы при основании 45 =>
BC = AC = 6
Объяснение: