Т.к. ac=a1c1, и bm, b1m1 - медианы, то am=cm=a1m1=c1m1. Рассмотрим треугольники abm и a1b1m1. Они равны по трем сторонам: - ab=a1b1 по условию; - bm=b1m1 по условию; - am=a1m1 как только что доказано. У равных треугольников abm и a1b1m1 равны соответственные углы amb и a1m1b1. Значит, углы bmc и b1m1c1, равные 180-<amb и 180-<a1m1b1, также равны между собой. Треугольники bmc и b1m1c1 будут равны по двум сторонам и углу между ними: - bm=b1m1 по условию; - сm=c1m1 как было показано выше; - углы bmc и b1m1c1 равны как доказано выше. У равных треугольников bmc и b1m1c1 равны соответственные стороны bc и b1c1. Таким образом, треугольники abc и a1b1c1 получаются равными по трем сторонам.
Если мы задумаемся и посмотрим вокруг нас, то заметим, что все вещи, даже живые существа имеют геометрические построения. Мы идём в школу и видем дома, которые имеют форму кубов, а крышы на них в форме пирамид. Даже сама школа имеет форму (опиши форму школы: куб, многоугольник или т.п.). Доска на которой пишет учитель представляет из себя прямоугольник, а мел которым пишут на доске, выгледит как цилиндр. Учебник и тетрадь в которой мы пишем ручкой имеют геометрическую форму ввиде паралелепипеда, а ручка, если прегледеться похожа на конус. Сама наша планета на которой мы живём имеет форму шара, и в любом предмете, который на ней существует можно разглядеть геометрические тела.
В р/б трапеции углы при каждом основании равны, сумма углов четырехугольника равна 360 град. Начерти рисунок. Смотри вложения: начало 22 окончание 23