Sбок ==> ? Середина M стороны BC соединим с вершиной пирамиды D и вершиной A ; Угол DMA будет линейным углом между плоскостями DBC и ABC [(DBC )^ (ABC) =α] .Действительно AM ┴ BC и DM ┴ BC ( а BC линия пересечения граней DBC и ABC) . C другой стороны DA ┴(ABC) ⇒DA┴AB ; DA ┴ AC .Поэтому Sбок =S(BDA) +S(CDA) +S(BDC) =1/2*a* DA +1/2*a*DA +S(BDC) ; Sбок =a*DA +S(BDC) . Из ΔMDA : DA=AM*tqα=a√3/2*tqα =a√3/2 *tqα . S(BDC) =1/2*BC*DM =1/2*BC*BM/cosα =S(ABC)/cosα ; S(BDC) = a²√3/4)/cosα. Sбок =a*a√3/2*tqα + a²√3/4)/cosα =(a²√3/4)(2tqα+1/cosα). Sбок = 6²√3/4(2tq60° + 1/cos60°) =9√3(2√3 +2) =18√3(√3+1) или иначе Sбок =18(3+√3). ответ : 18(3+√3) .
Если аб основание, тогда св боковая сторона, поскольку трапеция р/б, то св = ад = 10см, Проведём высоты из вершины тупых углов к большему основанию, обазначим их, как СМ и ДН. Получили два прямоугольных треугольника, которые равны по трём углам. Поскольку в р/б трапеции углы при основании равны, значит угол БСМ = углу АДН = 30градусам. АН и БМ из равенства треугольников равны. Также они лежат напротив угла в 30 градусов, соответсвенно равны 1/2 гипотенузы Т.е СВ, значит они равны 5 см. У нас остаётся отрезок МН = СД по свойству р/б трапеции. Поскоьку АБ=16, а АН и БМ 5 см, то НМ = СД = 6 см ответ: СД = 6 см