Из вершины прямого угла с треугольника авс проведена высота ср. радиус окружности, вписанной в треугольник вср, равен 96, тангенс угла вас равен 8/15. найдите радиус окружности, вписанной в треугольник авс
Вот вам решение :) треугольники ABC и BCP подобны треугольнику со сторонами 8, 15, 17, причем в треугольнике BCP BC - гипотенуза, а в треугольнике ABC - меньший катет. Радиус окружности, вписанной в треугольник со сторонами 8, 15, 17, равен (8 + 15 - 17)/2 = 3; то есть для треугольника BCP коэффициент подобия равен 96/3 = 32, откуда BC = 17*32 = 8*68. Я намеренно не "досчитываю", так как мне не нужны длины сторон, а нужен коэффициент подобия для треугольника ABC (и треугольника со сторонами 8, 15, 17), который "сам собой" и нашелся - он равен 68. Отсюда радиус окружности, вписанной в ABC, равен 68*3 = 204
1) Если один угол равнобокой трапеции 63°, то и другой, противоположный угол будет 63°. Сумма внутренних углов трапеции = 360°. Теперь, у нас есть две стороны, найдём остальные 2: 63+63=126° - это сумма двух углов 180-126=54 - это сумма двух других углов 54:2=27 - это два других угла И того, углы трапеции равны 63;63;27;27 2) А вот у прямоугольной же трапеции имеются два угла по 90°, а также, у нас есть ещё один угол, равный 63°. Находим 4-ый угол: 90+90+63+х=360 243+х=360 х=117° Углы прямоугольной трапеции равны 90;90;63;117
АF-высота, она образует прямоугольный треугольник АВF, уголF=90° АВ-гипотенуза, АF=1/2×AВ(половине гипотенузы), значит, угол(противолежащий) В=30° или 45°( т.к. по теореме в прямоугольном треугольнике напротив этих углов лежит сторона равная половине гипотенузы). если В=45°, значит, уголА=45°, т.к. сумма острых углов треугольника =90°,FB=4,5 следовательно, проверка: по теореме Пифагора: АВ^2=АF^2+FB^2 81=20,25+FB^2 FB^2=60,75 FB=7.79422 FB≠AF значит, угол В=30° А=180-30=150°(сумма смежных углов ромба =180°).
Радиус окружности, вписанной в треугольник со сторонами 8, 15, 17, равен (8 + 15 - 17)/2 = 3; то есть для треугольника BCP коэффициент подобия равен 96/3 = 32, откуда BC = 17*32 = 8*68. Я намеренно не "досчитываю", так как мне не нужны длины сторон, а нужен коэффициент подобия для треугольника ABC (и треугольника со сторонами 8, 15, 17), который "сам собой" и нашелся - он равен 68.
Отсюда радиус окружности, вписанной в ABC, равен 68*3 = 204