М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Maykaktys
Maykaktys
31.07.2020 14:00 •  Геометрия

Гипотинуза прямоугольного треугольника равна 25.один из его катетов равен 24. найдите другой катет.

👇
Ответ:
Valeriag200034
Valeriag200034
31.07.2020

теорема пифагора

гипотенуза в квадрате= катет в квадрате+ другой катет в квадрате

625=576+x^2

x^2=49

x=7

4,4(10 оценок)
Открыть все ответы
Ответ:
sens1980
sens1980
31.07.2020
Баня - это квадрат с цифрой 4, т.к. его сторона 2*3 = 6 м, а площадь 6*6 = 36 кв.м. Других фигур такой площади на плане нет.

Бак с водой - это цифра 5, т.к. все значения остальных цифр мы знаем.

Нужно найти расстояние от левого верхнего угла бака до правого нижнего угла бани (см. рис.).

Построим прямоугольный треугольник ABC, в котором гипотенуза AB - это расстояние от бака до бани.

Длина стороны AC 8 клеток или 2*8 = 16 метров, стороны BC - 6 клеток или 2*6 = 12 метров.
Теорема Пифагора звучит так, квадрат гипотенузы равен сумме квадратов катетов. Автору, который давал ответ, в конце надо было корень извлечь из 400, окончательный ответ получится 20
4,6(72 оценок)
Ответ:
mslava150
mslava150
31.07.2020

Подобные треугольники — треугольники, у которых углы соответственно равны, а стороны одного соответственно пропорциональны сторонам другого треугольника.

Коэффициентом подобия называют число k, равное отношению сходственных сторон подобных треугольников.

Сходственные (или соответственные) стороны подобных треугольников — стороны, лежащие напротив равных углов.

Признаки подобия треугольников

I признак подобия треугольников

Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.

II признак подобия треугольников

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны.

III признак подобия треугольников

Если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны.

Свойства подобных треугольников

Отношение площадей подобных треугольников равно квадрату коэффициента подобия.

Отношение периметров подобных треугольников равно коэффициенту подобия.

Отношение длин соответствующих элементов подобных треугольников (в частности, длин биссектрис, медиан, высот и серединных перпендикуляров) равно коэффициенту подобия.

Примеры наиболее часто встречающихся подобных треугольников

1. Прямая, параллельная стороне треугольника, отсекает от него треугольник, подобный данному.

2. Треугольники AOD и COB, образованные отрезками диагоналей и основаниями трапеции, подобны. Коэффициент подобия – k=\frac{AO}{OC}.

3. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобных исходному.

4,6(26 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ